|
This article is cited in 1 scientific paper (total in 1 paper)
The stability of solutions of certain operator equations with lagging arguments
Z. I. Rekhlitskii
Abstract:
We consider the equation
\begin{gather*}
y(t_1,\dots,t_n)-\sum_{q_1\dots q_n}A_{q_1\dots q_n}y(t_1-m^{(1)}_{q_1\dots q_n}a_1,\dots,t_n-m^{(n)}_{q_1\dots q_n}a_n)=f
\\
(m^{(k)}_{q_1\dots q_n} \text{ -- are integers} \geqslant0;\ a_k>0;\ 0\leqslant t_1,\dots,t_n<\infty),
\end{gather*}
where the $A_{q_1\dots q_n}=A_{q_1\dots q_n}(t_1,\dots,t_n)$ are continuous linear operator-functions operating in a complex Banach space. We establish necessary and sufficient tests for the boundedness of the solutions $y(t_1,\dots,t_n)$ of these equations for all bounded right-hand sides $f=f(t_1,\dots,t_n)$
Received: 04.07.1966
Citation:
Z. I. Rekhlitskii, “The stability of solutions of certain operator equations with lagging arguments”, Math. USSR-Izv., 1:2 (1967), 381–390
Linking options:
https://www.mathnet.ru/eng/im2545https://doi.org/10.1070/IM1967v001n02ABEH000563 https://www.mathnet.ru/eng/im/v31/i2/p391
|
Statistics & downloads: |
Abstract page: | 253 | Russian version PDF: | 73 | English version PDF: | 12 | References: | 43 | First page: | 1 |
|