Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1967, Volume 1, Issue 2, Pages 381–390
DOI: https://doi.org/10.1070/IM1967v001n02ABEH000563
(Mi im2545)
 

This article is cited in 1 scientific paper (total in 1 paper)

The stability of solutions of certain operator equations with lagging arguments

Z. I. Rekhlitskii
References:
Abstract: We consider the equation
\begin{gather*} y(t_1,\dots,t_n)-\sum_{q_1\dots q_n}A_{q_1\dots q_n}y(t_1-m^{(1)}_{q_1\dots q_n}a_1,\dots,t_n-m^{(n)}_{q_1\dots q_n}a_n)=f \\ (m^{(k)}_{q_1\dots q_n} \text{ -- are integers} \geqslant0;\ a_k>0;\ 0\leqslant t_1,\dots,t_n<\infty), \end{gather*}
where the $A_{q_1\dots q_n}=A_{q_1\dots q_n}(t_1,\dots,t_n)$ are continuous linear operator-functions operating in a complex Banach space. We establish necessary and sufficient tests for the boundedness of the solutions $y(t_1,\dots,t_n)$ of these equations for all bounded right-hand sides $f=f(t_1,\dots,t_n)$
Received: 04.07.1966
Bibliographic databases:
UDC: 517.9
MSC: 47A50, 46E15, 41A58
Language: English
Original paper language: Russian
Citation: Z. I. Rekhlitskii, “The stability of solutions of certain operator equations with lagging arguments”, Math. USSR-Izv., 1:2 (1967), 381–390
Citation in format AMSBIB
\Bibitem{Rek67}
\by Z.~I.~Rekhlitskii
\paper The stability of solutions of certain operator equations with lagging arguments
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 2
\pages 381--390
\mathnet{http://mi.mathnet.ru//eng/im2545}
\crossref{https://doi.org/10.1070/IM1967v001n02ABEH000563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=213929}
\zmath{https://zbmath.org/?q=an:0166.12403}
Linking options:
  • https://www.mathnet.ru/eng/im2545
  • https://doi.org/10.1070/IM1967v001n02ABEH000563
  • https://www.mathnet.ru/eng/im/v31/i2/p391
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:253
    Russian version PDF:73
    English version PDF:12
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024