Abstract:
The principal term is calculated for an asymptotic expression for the spectrum of multidimensional symmetric integral operators of potential type.
Citation:
M. Sh. Birman, M. Z. Solomyak, “Asymptotic behavior of the spectrum of weakly polar integral
operators”, Math. USSR-Izv., 4:5 (1970), 1151–1168
\Bibitem{BirSol70}
\by M.~Sh.~Birman, M.~Z.~Solomyak
\paper Asymptotic behavior of the spectrum of weakly polar integral
operators
\jour Math. USSR-Izv.
\yr 1970
\vol 4
\issue 5
\pages 1151--1168
\mathnet{http://mi.mathnet.ru//eng/im2462}
\crossref{https://doi.org/10.1070/IM1970v004n05ABEH000948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=279638}
\zmath{https://zbmath.org/?q=an:0261.47027}
Linking options:
https://www.mathnet.ru/eng/im2462
https://doi.org/10.1070/IM1970v004n05ABEH000948
https://www.mathnet.ru/eng/im/v34/i5/p1142
This publication is cited in the following 24 articles:
D. V. Zanin, F. A. Sukochev, “Connes integration formula: a constructive approach”, Funct. Anal. Appl., 57:1 (2023), 40–59
Alexander Nazarov, Yulia Petrova, “L2-small ball asymptotics for Gaussian random functions: A survey”, Probab. Surveys, 20:none (2023)
G. Rozenblum, G. Tashchiyan, “Spectral Estimates and Asymptotics for Integral Operators on Singular Sets”, J Math Sci, 268:4 (2022), 493
A. V. Sobolev, “On the spectrum of the one-particle density matrix”, Funct. Anal. Appl., 55:2 (2021), 113–121
Chigansky P., Kleptsyna M., “Sharp Asymptotics in a Fractional Sturm-Liouville Problem”, Fract. Calc. Appl. Anal., 24:3 (2021), 715–738
U. R. Freiberg, N. V. Rastegaev, “On spectral asymptotics of the sturm–liouville problem with self-conformal singular weight”, Siberian Math. J., 61:5 (2020), 901–912
Chigansky P., Kleptsyna M., “Exact Asymptotics in Eigenproblems For Fractional Brownian Covariance Operators”, Stoch. Process. Their Appl., 128:6 (2018), 2007–2059
G. V. Rozenblum, “On the mathematical papers of Mikhail Zakharovich Solomyak”, St. Petersburg Math. J., 30:3 (2019), 391–410
St. Petersburg Math. J., 30:3 (2019), 601–619
Polosin A.A., “On Eigenfunctions of a Convolution Operator on a Finite Interval For Which the Fourier Image of the Kernel Is the Characteristic Function”, Dokl. Math., 96:1 (2017), 389–392
Polosin A.A., “Spectrum and Eigenfunctions of the Convolution Operator on a Finite Interval With Kernel Whose Transform Is a Characteristic Function”, Differ. Equ., 53:9 (2017), 1145–1159
N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821
Milutin R. Dostanić, “Spectral properties of the simple layer potential type operators”, Rocky Mountain J. Math., 43:3 (2013)
M. Z. Solomyak, T. A. Suslina, D. R. Yafaev, “On the mathematical works of M. Sh. Birman”, St. Petersburg Math. J., 23:1 (2012), 1–38
A. I. Nazarov, “Logarithmic L2-small ball asymptotics with respect to self-similar measure for some Gaussian processes”, J. Math. Sci. (N. Y.), 133:3 (2006), 1314–1327
A. I. Nazarov, Ya. Yu. Nikitin, “Logarithmic L2-small ball asymptotics for some fractional Gaussian processes”, Theory Probab. Appl., 49:4 (2005), 645–658
M.R. Dostanić, “Spectral Estimates for the Commutator of Two-Dimensional Hilbert Transformation and the Operator of Multiplication with a C1 Function”, Rocky Mountain J. Math., 34:1 (2004)
B. V. Pal'tsev, “Asymptotic behaviour of the spectra of integral convolution operators on a finite interval with homogeneous polar kernels”, Izv. Math., 67:4 (2003), 695–779
A. S. Andreev, “Asymptotics of the spectrum of compact pseudodifferential operators in a Euclidean domain”, Math. USSR-Sb., 65:1 (1990), 205–228
Harold Widom, Contributions to Operator Theory and its Applications, 1988, 495