|
This article is cited in 24 scientific papers (total in 24 papers)
A parametric family of simple Lie algebras
A. I. Kostrikin
Abstract:
Over an algebraically closed field $k$ of characteristic $p=3$, a ten-dimensional simple Lie $p$-algebra $L(\varepsilon)$ is constructed which depends only on the parameter $\varepsilon\in k$. It is proved that algebras$L(\varepsilon)$ and $L(\varepsilon')$ are nonisomorphic for distinct values of $\varepsilon$ and $\varepsilon'$, $\varepsilon\varepsilon'\ne1$.
Received: 02.02.1970
Citation:
A. I. Kostrikin, “A parametric family of simple Lie algebras”, Math. USSR-Izv., 4:4 (1970), 751–764
Linking options:
https://www.mathnet.ru/eng/im2444https://doi.org/10.1070/IM1970v004n04ABEH000930 https://www.mathnet.ru/eng/im/v34/i4/p744
|
Statistics & downloads: |
Abstract page: | 369 | Russian version PDF: | 116 | English version PDF: | 14 | References: | 54 | First page: | 2 |
|