Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 3, Pages 495–534
DOI: https://doi.org/10.1070/im1999v063n03ABEH000243
(Mi im243)
 

This article is cited in 14 scientific papers (total in 15 papers)

Approximations with a sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations

E. P. Dolzhenko, E. A. Sevast'yanova

a Moscow Institute of Municipal Economy and Construction
References:
Abstract: Sign-sensitive approximations take into account not only the absolute value of the approximation error but also its sign. In the previous paper with the same title and the subtitle “existence and uniqueness theorems” we studied the problems of existence, uniqueness and plurality for the element of best uniform approximation with a sign-sensitive weight $p=(p_-,p_+)$ ($p_\pm(x)\geqslant 0$, $x\in E$) by some (in particular, Chebyshev) family $L$ of bounded functions on a set $E\subset\mathbb R$. An important role was played by the notions of rigidity and freedom of the system $(p,L)$. Here we consider the stability of this process of approximation, that is, whether the least deviations $E(p,L,f)$ and the best approximations $l(p,L,f)$ by elements $l\in L$ depend continuously on $p$ if the variation of $p$ is measured in the so-called $d$-metric. The results are applied to the theory of snakes and Hausdorff approximations of special multivalued functions.
Received: 03.11.1997
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 3, Pages 77–118
DOI: https://doi.org/10.4213/im243
Bibliographic databases:
MSC: 41A65, 41A50
Language: English
Original paper language: Russian
Citation: E. P. Dolzhenko, E. A. Sevast'yanov, “Approximations with a sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations”, Izv. RAN. Ser. Mat., 63:3 (1999), 77–118; Izv. Math., 63:3 (1999), 495–534
Citation in format AMSBIB
\Bibitem{DolSev99}
\by E.~P.~Dolzhenko, E.~A.~Sevast'yanov
\paper Approximations with a~sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 3
\pages 77--118
\mathnet{http://mi.mathnet.ru/im243}
\crossref{https://doi.org/10.4213/im243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1712128}
\zmath{https://zbmath.org/?q=an:0946.41023}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 3
\pages 495--534
\crossref{https://doi.org/10.1070/im1999v063n03ABEH000243}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083431000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747012652}
Linking options:
  • https://www.mathnet.ru/eng/im243
  • https://doi.org/10.1070/im1999v063n03ABEH000243
  • https://www.mathnet.ru/eng/im/v63/i3/p77
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:502
    Russian version PDF:246
    English version PDF:28
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024