Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 6, Pages 1217–1263
DOI: https://doi.org/10.1070/IM2009v073n06ABEH002479
(Mi im2427)
 

Monge–Ampère equations and tensorial functors

D. V. Tunitsky

Institute of Control Sciences, Russian Academy of Sciences
References:
Abstract: We consider differential-geometric structures associated with Monge–Ampère equations on manifolds and use them to study the contact linearization of such equations. We also consider the category of Monge–Ampère equations (the morphisms are contact diffeomorphisms) and a number of subcategories. We are chiefly interested in subcategories of Monge–Ampère equations whose objects are locally contact equivalent to equations linear in the second derivatives (semilinear equations), linear in derivatives, almost linear, linear in the second derivatives and independent of the first derivatives, linear, linear and independent of the first derivatives, equations with constant coefficients or evolution equations. We construct a number of functors from the category of Monge–Ampère equations and from some of its subcategories to the category of tensorial objects (that is, multi-valued sections of tensor bundles). In particular, we construct a pseudo-Riemannian metric for every generic Monge–Ampère equation. These functors enable us to establish effectively verifiable criteria for a Monge–Ampère equation to belong to the subcategories listed above.
Keywords: Monge–Ampère equation, contact linearization, differential-geometric structures.
Received: 13.11.2006
Bibliographic databases:
UDC: 517.95
Language: English
Original paper language: Russian
Citation: D. V. Tunitsky, “Monge–Ampère equations and tensorial functors”, Izv. Math., 73:6 (2009), 1217–1263
Citation in format AMSBIB
\Bibitem{Tun09}
\by D.~V.~Tunitsky
\paper Monge--Amp\`ere equations and tensorial functors
\jour Izv. Math.
\yr 2009
\vol 73
\issue 6
\pages 1217--1263
\mathnet{http://mi.mathnet.ru//eng/im2427}
\crossref{https://doi.org/10.1070/IM2009v073n06ABEH002479}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2640982}
\zmath{https://zbmath.org/?q=an:05668383}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73.1217T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274926100007}
\elib{https://elibrary.ru/item.asp?id=20358705}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549175208}
Linking options:
  • https://www.mathnet.ru/eng/im2427
  • https://doi.org/10.1070/IM2009v073n06ABEH002479
  • https://www.mathnet.ru/eng/im/v73/i6/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024