Abstract:
We calculate the cohomology of the Lie algebra of formal vector fields at the origin in a euclidean space. The results are applied to the investigation of the Lie algebra of tangent vector fields on a smooth manifold.
\Bibitem{GelFuc70}
\by I.~M.~Gel'fand, D.~B.~Fuchs
\paper Cohomology of the Lie algebra of formal vector fields
\jour Math. USSR-Izv.
\yr 1970
\vol 4
\issue 2
\pages 327--342
\mathnet{http://mi.mathnet.ru/eng/im2418}
\crossref{https://doi.org/10.1070/IM1970v004n02ABEH000908}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=266195}
\zmath{https://zbmath.org/?q=an:0216.20302}
Linking options:
https://www.mathnet.ru/eng/im2418
https://doi.org/10.1070/IM1970v004n02ABEH000908
https://www.mathnet.ru/eng/im/v34/i2/p322
This publication is cited in the following 37 articles:
Davide Rovere, “Kodaira-Spencer anomalies with Stora-Zumino method”, J. High Energ. Phys., 2025:1 (2025)
A. Zuevsky, “Product-Type Classes for Vertex Algebra Cohomology of Foliations on Complex Curves”, Commun. Math. Phys., 402:2 (2023), 1453
Johannes Huebschmann, “The formal Kuranishi parameterization via the universal homological perturbation theory solution of the deformation equation”, Georgian Mathematical Journal, 25:4 (2018), 529
Vasily Dolgushev, Chris Rogers, Thomas Willwacher, “Kontsevich's graph complex, GRT, and the deformation complex of the sheaf of polyvector fields”, Ann. Math., 2015, 855
A. A. BYTSENKO, M. CHAICHIAN, A. TUREANU, F. L. WILLIAMS, “BRST-INVARIANT DEFORMATIONS OF GEOMETRIC STRUCTURES IN TOPOLOGICAL FIELD THEORIES”, Int. J. Mod. Phys. A, 2013, 1350069
A. S. Khoroshkin, “Lie algebra of formal vector fields extended by formal g-valued functions”, J. Math. Sci. (N. Y.), 143:1 (2007), 2816–2830
A. Connes, H. Moscovici, “Modular Hecke algebras and their Hopf symmetry”, Mosc. Math. J., 4:1 (2004), 67–109
A. S. Dzhumadil'daev, “Integral and mod p-cohomologies of the Lie algebra W1”, Funct. Anal. Appl., 22:3 (1988), 226–228
K. V. Kozerenko, “Complete list of invariants of the algebra sl(2) for a field of finite characteristic”, Funct. Anal. Appl., 22:3 (1988), 230–232
M. V. Losik, “Characteristic classes of structures on manifolds”, Funct. Anal. Appl., 21:3 (1987), 206–216
A.M. Vinogradov, “The -spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory”, Journal of Mathematical Analysis and Applications, 100:1 (1984), 41
I. M. Gel'fand, I. Ya. Dorfman, “Hamiltonian operators and the classical Yang–Baxter equation”, Funct. Anal. Appl., 16:4 (1982), 241–248
Katsuyuki SHIBATA, “On Haefliger's model for the Gelfand-Fuks cohomology”, Jpn. j. math, 7:2 (1981), 379
B. L. Feigin, D. B. Fuchs, “Homology of the Lie algebra of vector fields on the line”, Funct. Anal. Appl., 14:3 (1980), 201–212
V. M. Buchstaber, A. V. Shokurov, “The Landweber–Novikov algebra and formal vector fields on the line”, Funct. Anal. Appl., 12:3 (1978), 159–168
I. M. Gel'fand, B. L. Feigin, D. B. Fuchs, “Cohomology of infinite-dimensional Lie algebras and Laplace operators”, Funct. Anal. Appl., 12:4 (1978), 243–247
Toru Tsujishita, “On the continuous cohomology of the Lie algebra of vector fields”, Proc. Japan Acad. Ser. A Math. Sci., 53:4 (1977)
D. B. Fuchs, “Finite-dimensional Lie algebras of formal vector fields and characteristic classes of homogeneous foliations”, Math. USSR-Izv., 10:1 (1976), 55–62
A. M. Gabrièlov, I. M. Gel'fand, M. V. Losik, “Combinatorial computation of characteristic classes”, Funct. Anal. Appl., 9:2 (1975), 103–115
B. I. Rozenfel'd, “Cohomology of the algebra of formal universal differential operators”, Funct. Anal. Appl., 9:2 (1975), 126–130