Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1970, Volume 4, Issue 2, Pages 327–342
DOI: https://doi.org/10.1070/IM1970v004n02ABEH000908
(Mi im2418)
 

This article is cited in 37 scientific papers (total in 37 papers)

Cohomology of the Lie algebra of formal vector fields

I. M. Gel'fand, D. B. Fuchs
References:
Abstract: We calculate the cohomology of the Lie algebra of formal vector fields at the origin in a euclidean space. The results are applied to the investigation of the Lie algebra of tangent vector fields on a smooth manifold.
Received: 04.11.1969
Bibliographic databases:
UDC: 513.88
Language: English
Original paper language: Russian
Citation: I. M. Gel'fand, D. B. Fuchs, “Cohomology of the Lie algebra of formal vector fields”, Math. USSR-Izv., 4:2 (1970), 327–342
Citation in format AMSBIB
\Bibitem{GelFuc70}
\by I.~M.~Gel'fand, D.~B.~Fuchs
\paper Cohomology of the Lie algebra of formal vector fields
\jour Math. USSR-Izv.
\yr 1970
\vol 4
\issue 2
\pages 327--342
\mathnet{http://mi.mathnet.ru/eng/im2418}
\crossref{https://doi.org/10.1070/IM1970v004n02ABEH000908}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=266195}
\zmath{https://zbmath.org/?q=an:0216.20302}
Linking options:
  • https://www.mathnet.ru/eng/im2418
  • https://doi.org/10.1070/IM1970v004n02ABEH000908
  • https://www.mathnet.ru/eng/im/v34/i2/p322
  • This publication is cited in the following 37 articles:
    1. Davide Rovere, “Kodaira-Spencer anomalies with Stora-Zumino method”, J. High Energ. Phys., 2025:1 (2025)  crossref
    2. A. Zuevsky, “Product-Type Classes for Vertex Algebra Cohomology of Foliations on Complex Curves”, Commun. Math. Phys., 402:2 (2023), 1453  crossref
    3. Johannes Huebschmann, “The formal Kuranishi parameterization via the universal homological perturbation theory solution of the deformation equation”, Georgian Mathematical Journal, 25:4 (2018), 529  crossref
    4. Vasily Dolgushev, Chris Rogers, Thomas Willwacher, “Kontsevich's graph complex, GRT, and the deformation complex of the sheaf of polyvector fields”, Ann. Math., 2015, 855  crossref
    5. A. A. BYTSENKO, M. CHAICHIAN, A. TUREANU, F. L. WILLIAMS, “BRST-INVARIANT DEFORMATIONS OF GEOMETRIC STRUCTURES IN TOPOLOGICAL FIELD THEORIES”, Int. J. Mod. Phys. A, 2013, 1350069  crossref
    6. A. S. Khoroshkin, “Lie algebra of formal vector fields extended by formal g-valued functions”, J. Math. Sci. (N. Y.), 143:1 (2007), 2816–2830  mathnet  crossref  mathscinet  zmath  elib  elib
    7. A. Connes, H. Moscovici, “Modular Hecke algebras and their Hopf symmetry”, Mosc. Math. J., 4:1 (2004), 67–109  mathnet  crossref  mathscinet  zmath
    8. A. S. Dzhumadil'daev, “Integral and mod p-cohomologies of the Lie algebra W1”, Funct. Anal. Appl., 22:3 (1988), 226–228  mathnet  crossref  mathscinet  zmath  isi
    9. K. V. Kozerenko, “Complete list of invariants of the algebra sl(2) for a field of finite characteristic”, Funct. Anal. Appl., 22:3 (1988), 230–232  mathnet  crossref  mathscinet  zmath  isi
    10. M. V. Losik, “Characteristic classes of structures on manifolds”, Funct. Anal. Appl., 21:3 (1987), 206–216  mathnet  crossref  mathscinet  zmath  isi
    11. A.M. Vinogradov, “The -spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory”, Journal of Mathematical Analysis and Applications, 100:1 (1984), 41  crossref
    12. I. M. Gel'fand, I. Ya. Dorfman, “Hamiltonian operators and the classical Yang–Baxter equation”, Funct. Anal. Appl., 16:4 (1982), 241–248  mathnet  crossref  mathscinet  zmath  isi
    13. Katsuyuki SHIBATA, “On Haefliger's model for the Gelfand-Fuks cohomology”, Jpn. j. math, 7:2 (1981), 379  crossref
    14. B. L. Feigin, D. B. Fuchs, “Homology of the Lie algebra of vector fields on the line”, Funct. Anal. Appl., 14:3 (1980), 201–212  mathnet  crossref  mathscinet  zmath  isi
    15. V. M. Buchstaber, A. V. Shokurov, “The Landweber–Novikov algebra and formal vector fields on the line”, Funct. Anal. Appl., 12:3 (1978), 159–168  mathnet  crossref  mathscinet  zmath
    16. I. M. Gel'fand, B. L. Feigin, D. B. Fuchs, “Cohomology of infinite-dimensional Lie algebras and Laplace operators”, Funct. Anal. Appl., 12:4 (1978), 243–247  mathnet  crossref  mathscinet  zmath
    17. Toru Tsujishita, “On the continuous cohomology of the Lie algebra of vector fields”, Proc. Japan Acad. Ser. A Math. Sci., 53:4 (1977)  crossref
    18. D. B. Fuchs, “Finite-dimensional Lie algebras of formal vector fields and characteristic classes of homogeneous foliations”, Math. USSR-Izv., 10:1 (1976), 55–62  mathnet  crossref  mathscinet  zmath
    19. A. M. Gabrièlov, I. M. Gel'fand, M. V. Losik, “Combinatorial computation of characteristic classes”, Funct. Anal. Appl., 9:2 (1975), 103–115  mathnet  crossref  mathscinet  zmath
    20. B. I. Rozenfel'd, “Cohomology of the algebra of formal universal differential operators”, Funct. Anal. Appl., 9:2 (1975), 126–130  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1189
    Russian version PDF:507
    English version PDF:104
    References:146
    First page:5
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025