Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1986, Volume 27, Issue 1, Pages 27–38
DOI: https://doi.org/10.1070/IM1986v027n01ABEH001163
(Mi im2388)
 

On systems with regular singularities, and their solutions

V. A. Golubeva
References:
Abstract: In this article two problems are solved.
1. It is shown that there exists an exponential representation for the fundamental matrix of a Pfaffian system on $C^n$ with regular singularities on a reducible algebraic submanifold $L$.
2. Let there be given on an algebraic manifold $X$ a function $f(x)$ of the Nilsson class with branch manifold $L\subset X$. It is shown that in a neighborhood of an ordinary point or of a point of normal intersection of components of $L$ the function $f(x)$ generates a $\mathscr D_X$-module with regular singularities on $L$.
Bibliography: 28 titles.
Received: 23.09.1982
Bibliographic databases:
UDC: 517.589
MSC: Primary 58A17; Secondary 81C30, 32B30
Language: English
Original paper language: Russian
Citation: V. A. Golubeva, “On systems with regular singularities, and their solutions”, Math. USSR-Izv., 27:1 (1986), 27–38
Citation in format AMSBIB
\Bibitem{Gol85}
\by V.~A.~Golubeva
\paper On systems with regular singularities, and their solutions
\jour Math. USSR-Izv.
\yr 1986
\vol 27
\issue 1
\pages 27--38
\mathnet{http://mi.mathnet.ru//eng/im2388}
\crossref{https://doi.org/10.1070/IM1986v027n01ABEH001163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=806681}
\zmath{https://zbmath.org/?q=an:0601.58007|0589.58001}
Linking options:
  • https://www.mathnet.ru/eng/im2388
  • https://doi.org/10.1070/IM1986v027n01ABEH001163
  • https://www.mathnet.ru/eng/im/v49/i4/p705
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024