|
This article is cited in 1 scientific paper (total in 1 paper)
A nowhere dense space of linear superpositions of functions of several variables
B. L. Fridman
Abstract:
Let $\mathbf I^3$ be the unit cube of three-dimensional space $R^3$, and let $\Phi_i(x)$, $i=1,\dots,n$, be mappings $\Phi_i\colon\mathbf I^3\to R^2$ of class $C_2$. We prove that the set of functions $F(x)$ on $\mathbf I^3$ which can be represented in the form
$$
F(x)=\sum_{i=1}^n(\chi_i\circ\Phi_i)(x),
$$
where the $\chi_i(u_1,u_2)$ are arbitrary continuous functions, $\chi_i\colon R^2\to R$, is nowhere dense in $\mathscr L_2(\mathbf I^3)$.
Received: 24.08.1971
Citation:
B. L. Fridman, “A nowhere dense space of linear superpositions of functions of several variables”, Izv. Akad. Nauk SSSR Ser. Mat., 36:4 (1972), 814–846; Math. USSR-Izv., 6:4 (1972), 807–837
Linking options:
https://www.mathnet.ru/eng/im2336https://doi.org/10.1070/IM1972v006n04ABEH001902 https://www.mathnet.ru/eng/im/v36/i4/p814
|
Statistics & downloads: |
Abstract page: | 373 | Russian version PDF: | 92 | English version PDF: | 8 | References: | 53 | First page: | 1 |
|