Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1973, Volume 7, Issue 4, Pages 711–732
DOI: https://doi.org/10.1070/IM1973v007n04ABEH001973
(Mi im2318)
 

This article is cited in 5 scientific papers (total in 5 papers)

Primary orders with a finite numbers of indecomposable representations

Yu. A. Drozd, V. V. Kirichenko
References:
Abstract: Let ΛΛ be a semisimple ZZ-ring and CC its center. Assume that for any prime ideal pC the ring Λp is primary. Let ¯Λ be the intersection of the maximal over-rings of Λ, I=¯Λ/Λ and I=radI. We prove that Λ has a finite number of indecomposable integral representations if and only if ¯Λ is a hereditary ring, I has two generators as a Λ-module, and I is cyclic.
Received: 14.03.1972
Bibliographic databases:
UDC: 519.49
MSC: Primary 16A18, 16A64; Secondary 16A40
Language: English
Original paper language: Russian
Citation: Yu. A. Drozd, V. V. Kirichenko, “Primary orders with a finite numbers of indecomposable representations”, Math. USSR-Izv., 7:4 (1973), 711–732
Citation in format AMSBIB
\Bibitem{DroKir73}
\by Yu.~A.~Drozd, V.~V.~Kirichenko
\paper Primary orders with a~finite numbers of indecomposable representations
\jour Math. USSR-Izv.
\yr 1973
\vol 7
\issue 4
\pages 711--732
\mathnet{http://mi.mathnet.ru/eng/im2318}
\crossref{https://doi.org/10.1070/IM1973v007n04ABEH001973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=325694}
\zmath{https://zbmath.org/?q=an:0291.16005}
Linking options:
  • https://www.mathnet.ru/eng/im2318
  • https://doi.org/10.1070/IM1973v007n04ABEH001973
  • https://www.mathnet.ru/eng/im/v37/i4/p715
  • This publication is cited in the following 5 articles:
    1. O. A. Tylyshchak, “On number of indecomposable modular representations of cyclic p-group over finite local ring”, Prykl. Probl. Mekh. Mat., 16 (2018)  crossref
    2. Hiroaki Hijikata, Kenji Nishida, “Primary Orders of Finite Representation Type”, Journal of Algebra, 192:2 (1997), 592  crossref
    3. Jeremy Haefner, “On local orders”, Journal of Algebra, 139:1 (1991), 195  crossref
    4. Jeremy Haefner, “On Gorenstein orders”, Journal of Algebra, 132:2 (1990), 406  crossref
    5. L. F. Barannik, P. M. Gudivok, “Crossed group rings of finite groups and rings of p-adic integers with finitely many indecomposable integral representations”, Math. USSR-Sb., 36:2 (1980), 173–194  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:355
    Russian version PDF:96
    English version PDF:31
    References:86
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025