Abstract:
In this paper we study the connection between free projective metabelian Lie algebras of finite rank and Serre's problem. We prove that projective metabelian Lie algebras of rank two are free.
E. Yu. Daniyarova, I. V. Kazatchkov, V. N. Remeslennikov, “Algebraic geometry over free metabelian Lie algebras. I. U-algebras and universal classes”, J. Math. Sci., 135:5 (2006), 3292–3310
V. A. Artamonov, “Projective metabelian groups and Lie algebras”, Math. USSR-Izv., 12:2 (1978), 213–223
V. A. Artamonov, “Proektivnye metabelevy gruppy i algebry Li”, UMN, 32:3(195) (1977), 166–166
L. N. Vaserstein, A. A. Suslin, “Serre's problem on projective modules over polynomial rings, and algebraic K-theory”, Math. USSR-Izv., 10:5 (1976), 937–1001
V. A. Artamonov, “Orbits of the group GL(r,k[X1,…,Xn])”, Math. USSR-Izv., 8:3 (1974), 490–500