Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1972, Volume 6, Issue 2, Pages 417–428
DOI: https://doi.org/10.1070/IM1972v006n02ABEH001880
(Mi im2303)
 

This article is cited in 8 scientific papers (total in 8 papers)

Inequalities for differentiable periodic functions and best approximation of one class of functions by another

N. P. Korneichuk
References:
Abstract: New results are obtained in this paper which elucidate properties of differentiable periodic functions connected with rearrangements. These results are applied in order to obtain a sharp estimate of the best uniform approximation of functions of the class WrHω by functions of the class Wr+1K.
Received: 19.08.1971
Bibliographic databases:
UDC: 517.5
MSC: 41A30, 42A04
Language: English
Original paper language: Russian
Citation: N. P. Korneichuk, “Inequalities for differentiable periodic functions and best approximation of one class of functions by another”, Math. USSR-Izv., 6:2 (1972), 417–428
Citation in format AMSBIB
\Bibitem{Kor72}
\by N.~P.~Korneichuk
\paper Inequalities for differentiable periodic functions and best approximation of one class of functions by another
\jour Math. USSR-Izv.
\yr 1972
\vol 6
\issue 2
\pages 417--428
\mathnet{http://mi.mathnet.ru/eng/im2303}
\crossref{https://doi.org/10.1070/IM1972v006n02ABEH001880}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=318738}
\zmath{https://zbmath.org/?q=an:0281.41004}
Linking options:
  • https://www.mathnet.ru/eng/im2303
  • https://doi.org/10.1070/IM1972v006n02ABEH001880
  • https://www.mathnet.ru/eng/im/v36/i2/p423
  • This publication is cited in the following 8 articles:
    1. Yongping Liu, Man Lu, “Approximation problems on the smoothness classes”, Acta Math Sci, 44:5 (2024), 1721  crossref
    2. N. P. Korneichuk, “Best Approximation and Symmetric Decreasing Rearrangements of Functions”, Proc. Steklov Inst. Math., 232 (2001), 172–186  mathnet  mathscinet  zmath
    3. S. K. Bagdasarov, “Maximization of functionals in Hω[a,b]”, Sb. Math., 189:2 (1998), 159–226  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. S. N. Kudryavtsev, “Approximating one class of finitely differentiable functions by another”, Izv. Math., 61:2 (1997), 347–362  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. V. T. Shevaldin, “Lower estimates of the widths of the classes of functions defined by a modulus of continuity”, Russian Acad. Sci. Izv. Math., 45:2 (1995), 399–415  mathnet  crossref  mathscinet  zmath  isi
    6. S. N. Kudryavtsev, “Some problems in approximation theory for a class of functions of finite smoothness”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 145–164  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. N. P. Korneichuk, “S. M. Nikol'skii and the development of research on approximation theory in the USSR”, Russian Math. Surveys, 40:5 (1985), 83–156  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. V. P. Motornyi, “On the best quadrature formula of the form k=1npkf(xk) for some classes of differentiable periodic functions”, Math. USSR-Izv., 8:3 (1974), 591–620  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:384
    Russian version PDF:150
    English version PDF:27
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025