|
This article is cited in 6 scientific papers (total in 6 papers)
Generalization of an asymptotic formula of V. A. Marchenko for spectral functions of a second-order boundary value problem
I. S. Kats
Abstract:
It is established that the spectral functions $\tau(\lambda)$ of the second-order boundary value problem
\begin{gather*}
-\frac d{dM(x)}\biggl[y^-(x)-\int_{-0}^{x-0}y(s)\,dQ(s)\biggr]-\lambda y(x)=0\qquad(0\le x<L),\\
y^-(0)=m,\qquad y(0)=n,
\end{gather*}
possess power asymptotics $\tau(\lambda)\sim C\lambda^\nu$ as $\lambda\uparrow+\infty$, when the function $M(x)$ possesses power asymptotics as $x\downarrow0$. A partial converse of this fact is also obtained.
Received: 30.12.1971
Citation:
I. S. Kats, “Generalization of an asymptotic formula of V. A. Marchenko for spectral functions of a second-order boundary value problem”, Izv. Akad. Nauk SSSR Ser. Mat., 37:2 (1973), 422–436; Math. USSR-Izv., 7:2 (1973), 424–438
Linking options:
https://www.mathnet.ru/eng/im2255https://doi.org/10.1070/IM1973v007n02ABEH001947 https://www.mathnet.ru/eng/im/v37/i2/p422
|
Statistics & downloads: |
Abstract page: | 325 | Russian version PDF: | 102 | English version PDF: | 9 | References: | 51 | First page: | 1 |
|