Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 6, Pages 1189–1206
DOI: https://doi.org/10.1070/im1998v062n06ABEH000223
(Mi im223)
 

This article is cited in 3 scientific papers (total in 3 papers)

Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms

A. I. Kozko

M. V. Lomonosov Moscow State University
References:
Abstract: We consider the Bernstein–Jackson–Nikol'skii inequalities for fractional derivatives in the case when the norm is asymmetric. Assume that $n\in\mathbb N$, $p_1,p_2,q_1,q_2\in[1,\infty]$, and $\alpha\in\mathbb R_+$. Then
$$ \sup_{\substack t_n\in\tau_n\\t_n\not\equiv 0}\dfrac{\|D^\alpha t_n\|_{q_1,q_2}}{\|t_n\|_{p_1,p_2}}\asymp I_\alpha n^{\alpha+\psi_1(p_1,p_2,q_1,q_2)}+n^{\alpha+\psi_2(p_1,p_2,q_1,q_2)}, $$
where
$$ I_\alpha=\begin{cases} \alpha,&0\leqslant\alpha\leqslant 1,\\ 1,&\alpha\geqslant 1, \end{cases} $$
and the functions $\psi_1$ and $\psi_2$ are given by an explicit formula. The asymptotic behaviour is with respect to $n$ for fixed $\alpha$, $p_1$, $p_2$, $q_1$ and $q_2$.
Received: 17.07.1997
Bibliographic databases:
MSC: 26A33, 41A17, 42A10
Language: English
Original paper language: Russian
Citation: A. I. Kozko, “Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms”, Izv. Math., 62:6 (1998), 1189–1206
Citation in format AMSBIB
\Bibitem{Koz98}
\by A.~I.~Kozko
\paper Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
\jour Izv. Math.
\yr 1998
\vol 62
\issue 6
\pages 1189--1206
\mathnet{http://mi.mathnet.ru//eng/im223}
\crossref{https://doi.org/10.1070/im1998v062n06ABEH000223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680858}
\zmath{https://zbmath.org/?q=an:0934.42001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081370400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747134641}
Linking options:
  • https://www.mathnet.ru/eng/im223
  • https://doi.org/10.1070/im1998v062n06ABEH000223
  • https://www.mathnet.ru/eng/im/v62/i6/p125
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024