|
On properties of an incomplete system of functions close to powerfunctions
L. A. Leont'eva
Abstract:
On the segment $[0,1]$ we consider a system of functions $\{x^{\lambda_\nu}[1+\varepsilon_\nu(x)]\}$, where the $\varepsilon_\nu(x)$ are small in a definite sense, $\lambda_\nu>0$, $\sum\limits_1^\infty\frac1{\lambda_\nu}<\infty$. We study the functions $y(x)$ which are approximated by linear combinations of functions of this system in $L_p(0,1)$ or in $C[0,1]$ .
Received: 01.07.1968
Citation:
L. A. Leont'eva, “On properties of an incomplete system of functions close to powerfunctions”, Math. USSR-Izv., 3:3 (1969), 643–670
Linking options:
https://www.mathnet.ru/eng/im2165https://doi.org/10.1070/IM1969v003n03ABEH000795 https://www.mathnet.ru/eng/im/v33/i3/p677
|
|