Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1976, Volume 10, Issue 3, Pages 652–671
DOI: https://doi.org/10.1070/IM1976v010n03ABEH001726
(Mi im2159)
 

This article is cited in 2 scientific papers (total in 2 papers)

Equiconvergence of expansions in a multiple Fourier series and Fourier integral for summation over squares

I. L. Bloshanskii
References:
Abstract: In this work there are constructed a function $f(\overline x)\in L_1([-\pi,\pi]^2)$ such that the difference between the Fourier series expansion and the Fourier integral expansion for summation over squares diverges almost everywhere on $\{[-\pi,\pi]^2\}$, and a function $f(\overline x)\in L_p([-\pi,\pi]^N)$, $p>1$, $N\geqslant2$, for which the difference diverges at a point.
Bibliography: 5 titles.
Received: 13.12.1974
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A92, 42A20; Secondary 40B05
Language: English
Original paper language: Russian
Citation: I. L. Bloshanskii, “Equiconvergence of expansions in a multiple Fourier series and Fourier integral for summation over squares”, Math. USSR-Izv., 10:3 (1976), 652–671
Citation in format AMSBIB
\Bibitem{Blo76}
\by I.~L.~Bloshanskii
\paper Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares
\jour Math. USSR-Izv.
\yr 1976
\vol 10
\issue 3
\pages 652--671
\mathnet{http://mi.mathnet.ru//eng/im2159}
\crossref{https://doi.org/10.1070/IM1976v010n03ABEH001726}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=415196}
\zmath{https://zbmath.org/?q=an:0348.42005}
Linking options:
  • https://www.mathnet.ru/eng/im2159
  • https://doi.org/10.1070/IM1976v010n03ABEH001726
  • https://www.mathnet.ru/eng/im/v40/i3/p685
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024