Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1975, Volume 9, Issue 6, Pages 1333–1357
DOI: https://doi.org/10.1070/IM1975v009n06ABEH001524
(Mi im2098)
 

This article is cited in 9 scientific papers (total in 9 papers)

The existence of lattice models with several types of pariticles

S. A. Pirogov
References:
Abstract: In this paper we consider classical lattice models more general than those previously considered. We find conditions for them under which there exist r different limiting ergodic Gibbs distributions.
Bibliography: 16 titles.
Received: 26.03.1974
Bibliographic databases:
UDC: 519.2
MSC: Primary 82A25; Secondary 60K35
Language: English
Original paper language: Russian
Citation: S. A. Pirogov, “The existence of lattice models with several types of pariticles”, Math. USSR-Izv., 9:6 (1975), 1333–1357
Citation in format AMSBIB
\Bibitem{Pir75}
\by S.~A.~Pirogov
\paper The existence of lattice models with several types of pariticles
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 6
\pages 1333--1357
\mathnet{http://mi.mathnet.ru/eng/im2098}
\crossref{https://doi.org/10.1070/IM1975v009n06ABEH001524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=403523}
Linking options:
  • https://www.mathnet.ru/eng/im2098
  • https://doi.org/10.1070/IM1975v009n06ABEH001524
  • https://www.mathnet.ru/eng/im/v39/i6/p1404
  • This publication is cited in the following 9 articles:
    1. Gibbs Measures and Phase Transitions, 2011, 495  crossref
    2. Eugene Pechersky, Elena Petrova, Sergey Pirogov, “Phase transitions of laminated models at any temperature”, Mosc. Math. J., 10:4 (2010), 789–806  mathnet  crossref  mathscinet
    3. Gibbs Measures and Phase Transitions, 1988  crossref
    4. Boguslaw Zegarliński, “Extremality and the global Markov property II: The global Markov property for non-FKG maximal Gibbs measures”, J Statist Phys, 43:3-4 (1986), 687  crossref  mathscinet  zmath
    5. S. A. Pirogov, “Coexistence of phases in a multicomponent lattice liquid with complex thermodynamic parameters”, Theoret. and Math. Phys., 66:2 (1986), 218–221  mathnet  crossref  mathscinet  isi
    6. A. G. Basuev, “Hamiltonian of the phase separation border and phase transitions of the first kind. I”, Theoret. and Math. Phys., 64:1 (1985), 716–734  mathnet  crossref  mathscinet  isi
    7. D. Ruelle, “On manifolds of phase coexistence”, Theoret. and Math. Phys., 30:1 (1977), 24–29  mathnet  crossref  mathscinet
    8. S. A. Pirogov, Ya. G. Sinai, “Phase diagrams of classical lattice systems continuation”, Theoret. and Math. Phys., 26:1 (1976), 39–49  mathnet  crossref  mathscinet
    9. V. M. Gercik, “Conditions for the nonuniqueness of the Gibbs state for lattice models having finite interaction potentials”, Math. USSR-Izv., 10:2 (1976), 429–443  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:328
    Russian version PDF:87
    English version PDF:22
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025