Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1975, Volume 9, Issue 4, Pages 793–812
DOI: https://doi.org/10.1070/IM1975v009n04ABEH001498
(Mi im2054)
 

This article is cited in 8 scientific papers (total in 8 papers)

Classification of simply connected six-dimensional spinor manifolds

A. V. Zhubr
References:
Abstract: This paper proves differential and homotopy classification theorems for simply connected smooth closed six-dimensional spinor manifolds.
Bibliography: 15 items.
Received: 19.07.1973
Bibliographic databases:
UDC: 513.8
MSC: Primary 57D15, 55D15; Secondary 57D90
Language: English
Original paper language: Russian
Citation: A. V. Zhubr, “Classification of simply connected six-dimensional spinor manifolds”, Math. USSR-Izv., 9:4 (1975), 793–812
Citation in format AMSBIB
\Bibitem{Zhu75}
\by A.~V.~Zhubr
\paper Classification of simply connected six-dimensional spinor manifolds
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 4
\pages 793--812
\mathnet{http://mi.mathnet.ru/eng/im2054}
\crossref{https://doi.org/10.1070/IM1975v009n04ABEH001498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=385879}
\zmath{https://zbmath.org/?q=an:0318.57019}
Linking options:
  • https://www.mathnet.ru/eng/im2054
  • https://doi.org/10.1070/IM1975v009n04ABEH001498
  • https://www.mathnet.ru/eng/im/v39/i4/p839
  • This publication is cited in the following 8 articles:
    1. Philipp Reiser, “Positive Ricci Curvature on Twisted Suspensions”, International Mathematics Research Notices, 2024  crossref
    2. Ruizhi Huang, “Loop homotopy of 6–manifolds over 4–manifolds”, Algebr. Geom. Topol., 23:5 (2023), 2369  crossref
    3. Martin Olbermann, “Conjugations on 6-manifolds with free integral cohomology”, Math. Ann, 2011  crossref
    4. Zhubr A.V., “Nekotorye novye rezultaty o trekhmernykh uzlakh v zamknutykh 2-svyaznykh 6-mernykh mnogoobraziyakh. chast 2 (dokazatelstva osnovnykh teorem)”, Izvestiya Komi nauchnogo tsentra URO RAN, 2011, no. 7, 4–12 Some new results on three-dimensional knots in closed two-connected 6-manifolds. part 2 (proofs of main theorems)  elib
    5. Fang Fuquan, Stephan Klaus, “Topological classification of 4-dimensional complete intersections”, manuscripta math, 90:1 (1996), 139  crossref  isi
    6. Kohhei Yamaguchi, Lecture Notes in Mathematics, 1425, Groups of Self-Equivalences and Related Topics, 1990, 157  crossref
    7. Kohhei Yamaguchi, “The group of self-homotopy equivalences of S2-bundles over S4. II. Applications”, Kodai Math. J., 10:1 (1987)  crossref
    8. Anatoly S. Libgober, John W. Wood, “Differentiable structures on complete intersections—I”, Topology, 21:4 (1982), 469  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:296
    Russian version PDF:114
    English version PDF:35
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025