Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 3, Pages 515–548
DOI: https://doi.org/10.1070/im1998v062n03ABEH000201
(Mi im201)
 

This article is cited in 3 scientific papers (total in 3 papers)

Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action

T. E. Panov

Moscow Power Engineering Institute (Technical University)
References:
Abstract: We obtain general formulae expressing Hirzebruch genera of a manifold with $\mathbf Z/p$-action in terms of invariants of this action (the sets of weights of fixed points). As an illustration, we consider numerous particular cases of well-known genera, in particular, the elliptic genus. We also describe the connection with the so-called Conner–Floyd equations for the weights of fixed points.
Received: 07.05.1997
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1998, Volume 62, Issue 3, Pages 87–120
DOI: https://doi.org/10.4213/im201
Bibliographic databases:
MSC: 57R20, 58G10
Language: English
Original paper language: Russian
Citation: T. E. Panov, “Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action”, Izv. RAN. Ser. Mat., 62:3 (1998), 87–120; Izv. Math., 62:3 (1998), 515–548
Citation in format AMSBIB
\Bibitem{Pan98}
\by T.~E.~Panov
\paper Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 3
\pages 87--120
\mathnet{http://mi.mathnet.ru/im201}
\crossref{https://doi.org/10.4213/im201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1642164}
\zmath{https://zbmath.org/?q=an:0926.57028}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 3
\pages 515--548
\crossref{https://doi.org/10.1070/im1998v062n03ABEH000201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076753000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747258401}
Linking options:
  • https://www.mathnet.ru/eng/im201
  • https://doi.org/10.1070/im1998v062n03ABEH000201
  • https://www.mathnet.ru/eng/im/v62/i3/p87
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:473
    Russian version PDF:246
    English version PDF:18
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024