Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1974, Volume 8, Issue 6, Pages 1209–1224
DOI: https://doi.org/10.1070/IM1974v008n06ABEH002144
(Mi im2007)
 

Recursiveness and $R^c$-operations

V. I. Amstislavskii
References:
Abstract: Relations are established characterizing the connection between recursiveness with respect to consistent functionals and $R^c$-operations known in the theory of sets. It is pointed out that the graph of a functional that is partial recursive with respect to a given consistent functional $F$ can be obtained by a certain (appropriate to $F$) $R^c$-operation. Sets obtained by a given $R^c$-operation over general recursive sets are characterized as semirecursive with respect to a certain (appropriate to this $R^c$-operation) consistent functional.
Received: 22.05.1973
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1974, Volume 38, Issue 6, Pages 1221–1237
Bibliographic databases:
UDC: 51.01+518.5+519.5
MSC: 02F27, 02K30
Language: English
Original paper language: Russian
Citation: V. I. Amstislavskii, “Recursiveness and $R^c$-operations”, Math. USSR-Izv., 8:6 (1974), 1209–1224
Citation in format AMSBIB
\Bibitem{Ams74}
\by V.~I.~Amstislavskii
\paper Recursiveness and $R^c$-operations
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 6
\pages 1209--1224
\mathnet{http://mi.mathnet.ru//eng/im2007}
\crossref{https://doi.org/10.1070/IM1974v008n06ABEH002144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=363900}
\zmath{https://zbmath.org/?q=an:0349.02033}
Linking options:
  • https://www.mathnet.ru/eng/im2007
  • https://doi.org/10.1070/IM1974v008n06ABEH002144
  • https://www.mathnet.ru/eng/im/v38/i6/p1221
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:235
    Russian version PDF:67
    English version PDF:12
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024