Abstract:
In this article it is explained how to construct for a nonsingular model of a curve defined over a number field a theory analogous to the theory of divisors, and the intersection numbers of divisors, on a compact algebraic surface.
\Bibitem{Ara74}
\by S.~Yu.~Arakelov
\paper Intersection theory of divisors on an arithmetic surface
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 6
\pages 1167--1180
\mathnet{http://mi.mathnet.ru/eng/im2004}
\crossref{https://doi.org/10.1070/IM1974v008n06ABEH002141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=472815}
\zmath{https://zbmath.org/?q=an:0355.14002}
Linking options:
https://www.mathnet.ru/eng/im2004
https://doi.org/10.1070/IM1974v008n06ABEH002141
https://www.mathnet.ru/eng/im/v38/i6/p1179
This publication is cited in the following 66 articles:
Paolo Dolce, Pietro Mercuri, “Intersection matrices for the minimal regular model of X0(N)X0(N) and applications to the Arakelov canonical sheaf”, Journal of London Math Soc, 110:2 (2024)
Robert Wilms, “Some Differential Equations for the Riemann θ-Function on Jacobians”, SIGMA, 20 (2024), 060, 11 pp.
Yinchong Song, “Asymptotic behavior of the Zhang–Kawazumi's φ-invariants”, Advances in Mathematics, 435 (2023), 109349
Paolo Dolce, Roberto Gualdi, “Numerical equivalence of ℝ-divisors and Shioda–Tate formula for arithmetic varieties”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2022:784 (2022), 131
Emmanuel Peyre, Gaël Rémond, Lecture Notes in Mathematics, 2276, Arakelov Geometry and Diophantine Applications, 2021, 1
de Jong R., “Frobenius' Theta Function and Arakelov Invariants in Genus Three”, Pure Appl. Math. Q., 16:5 (2020), 1387–1418
Christian Curilla, J. Steffen Müller, “The minimal regular model of a Fermat curve of odd squarefree exponent and its dualizing sheaf”, Kyoto J. Math., 60:1 (2020)
Thomas Vandermeulen, “The genus two free boson in Arakelov geometry”, Nuclear Physics B, 960 (2020), 115184
Michiel Jespers, Robin de Jong, “Chern–Weil Theory for Line Bundles with the Family Arakelov Metric”, Michigan Math. J., 69:1 (2020)
Weronika Czerniawska, Paolo Dolce, “Adelic geometry on arithmetic surfaces II: Completed adeles and idelic Arakelov intersection theory”, Journal of Number Theory, 211 (2020), 235
S. O. Gorchinskiy, Vik. S. Kulikov, A. N. Parshin, V. L. Popov, “Igor Rostislavovich Shafarevich and His Mathematical Heritage”, Proc. Steklov Inst. Math., 307 (2019), 1–21
Semyon Klevtsov, “Laughlin States on Higher Genus Riemann Surfaces”, Commun. Math. Phys., 367:3 (2019), 837
Márton Hablicsek, Máté L. Juhász, “Algebraic geometry over the residue field of the infinite place”, Communications in Algebra, 46:10 (2018), 4149
Yuji Odaka, “Canonical Kähler metrics and arithmetics: Generalizing Faltings heights”, Kyoto J. Math., 58:2 (2018)
Nobuyuki Ishibashi, Koichi Murakami, “Multiloop amplitudes of light-cone gauge superstring field theory: odd spin structure contributions”, J. High Energ. Phys., 2018:3 (2018)
Robert Wilms, “New explicit formulas for Faltings' delta-invariant”, Invent. math., 209:2 (2017), 481
Nobuyuki Ishibashi, Koichi Murakami, “Multiloop amplitudes of light-cone gauge NSR string field theory in noncritical dimensions”, J. High Energ. Phys., 2017:1 (2017)
Nobuyuki Ishibashi, “Light-cone gauge superstring field theory in a linear dilaton background”, Progress of Theoretical and Experimental Physics, 2017:3 (2017)
Anilatmaja Aryasomayajula, “Bounds for Green’s functions on noncompact hyperbolic Riemann orbisurfaces of finite volume”, Math. Z, 2015