Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 3, Pages 601–626
DOI: https://doi.org/10.1070/im1998v062n03ABEH000200
(Mi im200)
 

This article is cited in 19 scientific papers (total in 19 papers)

Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order

A. E. Shishkov, A. G. Shchelkov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: We study the geometry of the supports of solutions of the Cauchy–Dirichlet problem for a wide class of quasi-linear degenerate parabolic equations of any order, whose model representative is the equation of non-stationary filtration with non-linear absorption:
$$ \dfrac{\partial}{\partial t}\bigl(|u|^{q-1}u\bigr)-\sum_{i=1}^n\,\dfrac{\partial}{\partial x_i}\biggl(|D_x u|^{p-1}\dfrac{\partial u}{\partial x_i}\biggr)+b_0|u|^{\lambda-1}u=0,\qquad b_0>0,\quad n\geqslant 1. $$
In the cases when $0<\lambda<p\leqslant q$ and $0<\lambda<q<p$, which correspond to “fast” and “slow” diffusion, we find conditions on the behaviour of the initial function $u_0(x)\in L_{q+1}(\Omega)$ in a neighbourhood of the boundary of its support that ensure the effect of finite and infinite inertia of the support of an arbitrary energy solution; these conditions are, in a certain sense, exact. We establish a condition for the reverse motion of the front of the support boundary.
Received: 15.03.1996
Bibliographic databases:
MSC: 35K55
Language: English
Original paper language: Russian
Citation: A. E. Shishkov, A. G. Shchelkov, “Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order”, Izv. Math., 62:3 (1998), 601–626
Citation in format AMSBIB
\Bibitem{ShiShc98}
\by A.~E.~Shishkov, A.~G.~Shchelkov
\paper Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order
\jour Izv. Math.
\yr 1998
\vol 62
\issue 3
\pages 601--626
\mathnet{http://mi.mathnet.ru//eng/im200}
\crossref{https://doi.org/10.1070/im1998v062n03ABEH000200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1642176}
\zmath{https://zbmath.org/?q=an:0918.35075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076753000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22444452795}
Linking options:
  • https://www.mathnet.ru/eng/im200
  • https://doi.org/10.1070/im1998v062n03ABEH000200
  • https://www.mathnet.ru/eng/im/v62/i3/p175
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:425
    Russian version PDF:219
    English version PDF:20
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024