Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 4, Pages 695–721
DOI: https://doi.org/10.1070/im1998v062n04ABEH000196
(Mi im196)
 

This article is cited in 4 scientific papers (total in 4 papers)

Real algebraic GM$\mathbb Z$-surfaces

V. A. Krasnov

P. G. Demidov Yaroslavl State University
References:
Abstract: We prove necessary and sufficient conditions for a real algebraic surface to be a $\operatorname{GM}\mathbb Z$-surface. We calculate the Neron–Severi group $\operatorname{NS}(X)$, the Brauer group $\operatorname{Br}(X)$ and the algebraic cohomology group $H_a^1(X(\mathbb R),\mathbb F_2)$, where $X$ is a real projective surface. We also prove Nikulin's congruence for an arbitrary orientable $M$-surface
Received: 20.11.1996
Bibliographic databases:
MSC: 14P25
Language: English
Original paper language: Russian
Citation: V. A. Krasnov, “Real algebraic GM$\mathbb Z$-surfaces”, Izv. Math., 62:4 (1998), 695–721
Citation in format AMSBIB
\Bibitem{Kra98}
\by V.~A.~Krasnov
\paper Real algebraic GM$\mathbb Z$-surfaces
\jour Izv. Math.
\yr 1998
\vol 62
\issue 4
\pages 695--721
\mathnet{http://mi.mathnet.ru//eng/im196}
\crossref{https://doi.org/10.1070/im1998v062n04ABEH000196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1660154}
\zmath{https://zbmath.org/?q=an:0931.14034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000077562500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747960391}
Linking options:
  • https://www.mathnet.ru/eng/im196
  • https://doi.org/10.1070/im1998v062n04ABEH000196
  • https://www.mathnet.ru/eng/im/v62/i4/p51
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:350
    Russian version PDF:165
    English version PDF:15
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024