|
This article is cited in 4 scientific papers (total in 4 papers)
Real algebraic GM$\mathbb Z$-surfaces
V. A. Krasnov P. G. Demidov Yaroslavl State University
Abstract:
We prove necessary and sufficient conditions for a real algebraic surface to be a $\operatorname{GM}\mathbb Z$-surface. We calculate the Neron–Severi group $\operatorname{NS}(X)$, the Brauer group $\operatorname{Br}(X)$ and the algebraic cohomology group $H_a^1(X(\mathbb R),\mathbb F_2)$, where $X$ is a real projective surface. We also prove Nikulin's congruence for an arbitrary orientable $M$-surface
Received: 20.11.1996
Citation:
V. A. Krasnov, “Real algebraic GM$\mathbb Z$-surfaces”, Izv. Math., 62:4 (1998), 695–721
Linking options:
https://www.mathnet.ru/eng/im196https://doi.org/10.1070/im1998v062n04ABEH000196 https://www.mathnet.ru/eng/im/v62/i4/p51
|
Statistics & downloads: |
Abstract page: | 350 | Russian version PDF: | 165 | English version PDF: | 15 | References: | 53 | First page: | 1 |
|