Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1974, Volume 8, Issue 3, Pages 667–726
DOI: https://doi.org/10.1070/IM1974v008n03ABEH002125
(Mi im1946)
 

This article is cited in 1 scientific paper (total in 1 paper)

Estimates on the boundary for differential operators with constant coefficients in a half-space

I. V. Gel'man, V. G. Maz'ya
References:
Abstract: For differential operators $A(D)$, $P_j(D)$ ($j=1,\dots,N$, $D=(\partial/i\partial x_1,\dots,\partial/i\partial x_{n-1};\partial/i\partial t)$) with constant complex coefficients in the half-space $\mathbf R^n_+=\{(x;t),x\in\mathbf R^{n-1},t\geqslant0\}$ we present a precise description of the “space of traces” $A(D)u|_{t=0}$ of elements $u$ in the completion of the space $C^\infty_0(\mathbf R^n_+)$ with respect to the metric $\sum_{j=1}^N\|P_j(D)u\|^2$ ($\|\cdot\|$ is the norm in $L_2(\mathbf R^n_+)$). We consider the case of the metric $\|P(D)u\|^2+\|u\|^2$ in detail.
We establish necessary and sufficient conditions for validity of the inequality
$$ \bigl\langle A(D)u\bigr\rangle_{s_0}^2\leqslant C\biggl(\sum_{j=1}^N\|P_j(D)u\|^2+\sum_{k=1}^r\langle B_k(D)u\rangle_{s_k}^2\biggr) $$
for all $u(x;t)\in C^\infty_0(\mathbf R^n_+)$ ($\langle\cdot\rangle$ is the norm in $\mathscr H_s(\partial\mathbf R^n_+)$).
Received: 05.03.1973
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1974, Volume 38, Issue 3, Pages 663–720
Bibliographic databases:
UDC: 517.944
MSC: Primary 47F05, 35B45; Secondary 47E05, 47G05
Language: English
Original paper language: Russian
Citation: I. V. Gel'man, V. G. Maz'ya, “Estimates on the boundary for differential operators with constant coefficients in a half-space”, Izv. Akad. Nauk SSSR Ser. Mat., 38:3 (1974), 663–720; Math. USSR-Izv., 8:3 (1974), 667–726
Citation in format AMSBIB
\Bibitem{GelMaz74}
\by I.~V.~Gel'man, V.~G.~Maz'ya
\paper Estimates on the boundary for differential operators with constant coefficients in a~half-space
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1974
\vol 38
\issue 3
\pages 663--720
\mathnet{http://mi.mathnet.ru/im1946}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=352677}
\zmath{https://zbmath.org/?q=an:0316.35008}
\transl
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 3
\pages 667--726
\crossref{https://doi.org/10.1070/IM1974v008n03ABEH002125}
Linking options:
  • https://www.mathnet.ru/eng/im1946
  • https://doi.org/10.1070/IM1974v008n03ABEH002125
  • https://www.mathnet.ru/eng/im/v38/i3/p663
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:294
    Russian version PDF:91
    English version PDF:11
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024