Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1974, Volume 8, Issue 3, Pages 490–500
DOI: https://doi.org/10.1070/IM1974v008n03ABEH002117
(Mi im1935)
 

This article is cited in 3 scientific papers (total in 3 papers)

Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$

V. A. Artamonov
References:
Abstract: In this paper it is shown that the study of projective metabelian Lie algebras of finite rank reduces to a partial solution of Serre's problem on projective modules over polynomial rings. It is also observed that projective commutative-associative algebras of dimension 1 are isomorphic to the ring of polynomials in one variable over the ground field.
Received: 06.03.1973
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1974, Volume 38, Issue 3, Pages 484–494
Bibliographic databases:
UDC: 519.4
MSC: Primary 17B30, 20G35; Secondary 13C10, 13B25, 13B20, 13C15
Language: English
Original paper language: Russian
Citation: V. A. Artamonov, “Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$”, Math. USSR-Izv., 8:3 (1974), 490–500
Citation in format AMSBIB
\Bibitem{Art74}
\by V.~A.~Artamonov
\paper Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 3
\pages 490--500
\mathnet{http://mi.mathnet.ru//eng/im1935}
\crossref{https://doi.org/10.1070/IM1974v008n03ABEH002117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=352192}
\zmath{https://zbmath.org/?q=an:0344.17006}
Linking options:
  • https://www.mathnet.ru/eng/im1935
  • https://doi.org/10.1070/IM1974v008n03ABEH002117
  • https://www.mathnet.ru/eng/im/v38/i3/p484
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:313
    Russian version PDF:101
    English version PDF:15
    References:73
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024