Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1977, Volume 11, Issue 4, Pages 889–908
DOI: https://doi.org/10.1070/IM1977v011n04ABEH001750
(Mi im1874)
 

This article is cited in 4 scientific papers (total in 4 papers)

On $(H,k)$-summability of multiple trigonometric Fourier series

L. D. Gogoladze
References:
Abstract: A theorem is proved from which, in particular, it follows that if $f\in L(\ln^+L)^{N-1}$ on $T^N\equiv[-\pi,\pi]^N$, then the multiple trigonometric Fourier series of $f$ and all conjugate series are $(H,k)$-summable almost everywhere on $T^N$ for every $k>0$.
In the case where $f\in L(\ln^+L)^{N+1}$ this result was obtained by Marcinkiewicz (Collected papers, PWN, Warsaw, 1964).
That it is unimprovable, in a certain sense, follows from a result of Saks (On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235–252).
Bibliography: 15 titles.
Received: 05.01.1976
Bibliographic databases:
UDC: 517.5
Language: English
Original paper language: Russian
Citation: L. D. Gogoladze, “On $(H,k)$-summability of multiple trigonometric Fourier series”, Math. USSR-Izv., 11:4 (1977), 889–908
Citation in format AMSBIB
\Bibitem{Gog77}
\by L.~D.~Gogoladze
\paper On $(H,k)$-summability of multiple trigonometric Fourier series
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 4
\pages 889--908
\mathnet{http://mi.mathnet.ru//eng/im1874}
\crossref{https://doi.org/10.1070/IM1977v011n04ABEH001750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=473711}
\zmath{https://zbmath.org/?q=an:0362.42003}
Linking options:
  • https://www.mathnet.ru/eng/im1874
  • https://doi.org/10.1070/IM1977v011n04ABEH001750
  • https://www.mathnet.ru/eng/im/v41/i4/p937
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024