Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 1, Pages 19–53
DOI: https://doi.org/10.1070/im1998v062n01ABEH000182
(Mi im182)
 

This article is cited in 29 scientific papers (total in 29 papers)

The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points

S. N. Kudryavtsev
References:
Abstract: We find the order of the best accuracy of reconstruction of functions in the Nikolskii and Besov classes (along with their derivatives up to a certain order) from their values at a given number of points.
Received: 06.02.1997
Bibliographic databases:
MSC: 41A63, 41A46
Language: English
Original paper language: Russian
Citation: S. N. Kudryavtsev, “The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points”, Izv. Math., 62:1 (1998), 19–53
Citation in format AMSBIB
\Bibitem{Kud98}
\by S.~N.~Kudryavtsev
\paper The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points
\jour Izv. Math.
\yr 1998
\vol 62
\issue 1
\pages 19--53
\mathnet{http://mi.mathnet.ru//eng/im182}
\crossref{https://doi.org/10.1070/im1998v062n01ABEH000182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1622329}
\zmath{https://zbmath.org/?q=an:0944.41013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074366100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22044433640}
Linking options:
  • https://www.mathnet.ru/eng/im182
  • https://doi.org/10.1070/im1998v062n01ABEH000182
  • https://www.mathnet.ru/eng/im/v62/i1/p21
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:550
    Russian version PDF:222
    English version PDF:29
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024