Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1975, Volume 9, Issue 1, Pages 27–62
DOI: https://doi.org/10.1070/IM1975v009n01ABEH001472
(Mi im1814)
 

This article is cited in 3 scientific papers (total in 3 papers)

$q$-finite morphisms in formal algebraic geometry

F. L. Zak
References:
Abstract: In this paper we introduce definitions and study properties of $q$-finite and $q$-acyclic morphisms of formal algebraic spaces. We give criteria for the existence of formal contractions in terms of 1-finite morphisms. We use these criteria to prove the existence of certain modifications and the algebraizability of certain formal morphisms.
Bibliography: 15 items.
Received: 12.02.1974
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1975, Volume 39, Issue 1, Pages 28–68
Bibliographic databases:
UDC: 513.6
MSC: Primary 14F05, 14B10, 14B20, 14E05; Secondary 32C45, 32F10
Language: English
Original paper language: Russian
Citation: F. L. Zak, “$q$-finite morphisms in formal algebraic geometry”, Izv. Akad. Nauk SSSR Ser. Mat., 39:1 (1975), 28–68; Math. USSR-Izv., 9:1 (1975), 27–62
Citation in format AMSBIB
\Bibitem{Zak75}
\by F.~L.~Zak
\paper $q$-finite morphisms in formal algebraic geometry
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1975
\vol 39
\issue 1
\pages 28--68
\mathnet{http://mi.mathnet.ru/im1814}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=419440}
\zmath{https://zbmath.org/?q=an:0307.14006}
\transl
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 1
\pages 27--62
\crossref{https://doi.org/10.1070/IM1975v009n01ABEH001472}
Linking options:
  • https://www.mathnet.ru/eng/im1814
  • https://doi.org/10.1070/IM1975v009n01ABEH001472
  • https://www.mathnet.ru/eng/im/v39/i1/p28
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:277
    Russian version PDF:91
    English version PDF:12
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024