Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1977, Volume 11, Issue 1, Pages 193–204
DOI: https://doi.org/10.1070/IM1977v011n01ABEH001705
(Mi im1797)
 

This article is cited in 2 scientific papers (total in 2 papers)

A theorem on projections of rearranged series with terms in $L_p$

D. V. Pecherskii
References:
Abstract: The following theorem is proved in this paper: if a series $\sum_{k=1}^\infty f_k$ with terms in $L_p$ ($1\leqslant p<\infty$) satisfies either the condition $\sum_{k=1}^\infty\|f_k\|^2<\infty$ when $2\leqslant p<\infty$ or the condition $\sqrt{\sum_{k=1}^\infty f_k^2(x)}\in L_p$ when $1\leqslant p<2$, then in order that there exist a permutation of the natural numbers $\{n_1,\dots,n_k,\dots\}$ such that $\sum_{k=1}^\infty f_{n_k}=f$ in the $L_p$ norm, it is necessary and sufficient that for each linear functional $F\in L_p^*$, $\|F\|=1$, there exists a permutation $\{m_1,\dots,m_k,\dots\}$ depending on $F$ such that $\sum_{k=1}^\infty F(f_{m_k})=F(f)$.
Bibliography: 9 titles.
Received: 11.11.1975
Bibliographic databases:
UDC: 517.5
MSC: Primary 46E30; Secondary 40A05
Language: English
Original paper language: Russian
Citation: D. V. Pecherskii, “A theorem on projections of rearranged series with terms in $L_p$”, Math. USSR-Izv., 11:1 (1977), 193–204
Citation in format AMSBIB
\Bibitem{Pec77}
\by D.~V.~Pecherskii
\paper A~theorem on projections of rearranged series with terms in~$L_p$
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 1
\pages 193--204
\mathnet{http://mi.mathnet.ru//eng/im1797}
\crossref{https://doi.org/10.1070/IM1977v011n01ABEH001705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=437980}
\zmath{https://zbmath.org/?q=an:0349.40006|0392.40004}
Linking options:
  • https://www.mathnet.ru/eng/im1797
  • https://doi.org/10.1070/IM1977v011n01ABEH001705
  • https://www.mathnet.ru/eng/im/v41/i1/p203
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:869
    Russian version PDF:147
    English version PDF:26
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024