Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1978, Volume 12, Issue 3, Pages 507–535
DOI: https://doi.org/10.1070/IM1978v012n03ABEH001997
(Mi im1779)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the nonemptiness of classes in axiomatic set theory

V. G. Kanovei
References:
Abstract: Theorems are proved on the consistency with $ZF$, for $n\geqslant2$, of each of the following three propositions: (1) there exists an $L$-minimal (in particular, nonconstructive) $a\subseteq\omega$ such that $V=L[a]$ and $\{a\}\in\Pi_n^1$, but every $b\subseteq\omega$ of class $\Sigma_n^1$ with constructive code is itself constructive; (2) there exist $a,b\subseteq\omega$ such that their $L$-degrees differ by a formula from $\Pi_n^1$, but not by formulas from $\Sigma_n^1$ with constants from $L$ ($X$ and $Y$ are said to differ by a formula $\sim[(\exists\,x\in X)\varphi(x)\equiv(\exists\,y\in Y)\varphi(y)])$; (3) there exists an infinite, but Dedekind finite, set $X\in\mathscr P(\omega)$ of class $\Pi_n^1$, whereas there are no such sets of class $\underline\Sigma_n^1$. The proof uses Cohen's forcing method.
Bibliography: 17 titles.
Received: 06.10.1975
Revised: 22.02.1977
Bibliographic databases:
UDC: 51.01.16
MSC: Primary 03E30; Secondary 03E35
Language: English
Original paper language: Russian
Citation: V. G. Kanovei, “On the nonemptiness of classes in axiomatic set theory”, Math. USSR-Izv., 12:3 (1978), 507–535
Citation in format AMSBIB
\Bibitem{Kan78}
\by V.~G.~Kanovei
\paper On the nonemptiness of classes in axiomatic set theory
\jour Math. USSR-Izv.
\yr 1978
\vol 12
\issue 3
\pages 507--535
\mathnet{http://mi.mathnet.ru//eng/im1779}
\crossref{https://doi.org/10.1070/IM1978v012n03ABEH001997}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=503431}
\zmath{https://zbmath.org/?q=an:0427.03044|0409.03031}
Linking options:
  • https://www.mathnet.ru/eng/im1779
  • https://doi.org/10.1070/IM1978v012n03ABEH001997
  • https://www.mathnet.ru/eng/im/v42/i3/p550
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:330
    Russian version PDF:107
    English version PDF:10
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024