Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1978, Volume 12, Issue 3, Pages 448–462
DOI: https://doi.org/10.1070/IM1978v012n03ABEH001991
(Mi im1776)
 

This article is cited in 15 scientific papers (total in 15 papers)

Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace–Beltrami operator on the fundamental domain of the modular group $PSL(2,\mathbf Z)$

A. B. Venkov
References:
Abstract: In this paper a derivation is given of a generalized Selberg trace formula corresponding to the odd eigenfunctions of the Laplace–Beltrami operator in the space $L_2(\Gamma\setminus H)$, where the discrete group $\Gamma$ is $\Gamma=PSL(2,\mathbf Z)$ and $H$ is the upper halfplane (the Dirichlet problem on half of the fundamental domain). As an application a generalization is obtained of Minakshisundaram's formula:
\begin{equation} \int_0^\infty e^{-t\lambda}\,d\alpha(\lambda)=\frac1t\cdot\frac1{24}+\frac{\ln t}{\sqrt t}\cdot\frac1{8\sqrt\pi}+\frac1{\sqrt t}\cdot\frac1{8\sqrt\pi}(\mathbf C-\ln2)+O_{t\to0,t>0} \end{equation}
($\alpha(\lambda)$ is the corresponding spectral density; $\mathbf C$ is Euler's constant) and also an asymptotic formula characterizing the irregularity of the distribution of the eigenvalues. Similar results are also obtained for all the eigenvalues of the discrete spectrum of the Laplace–Beltrami operator in the space $L_2(\Gamma\setminus H)$ when $\Gamma$ is the indicated group.
Bibliography: 18 titles.
Received: 26.01.1977
Bibliographic databases:
UDC: 517.43+519.4+511.3
MSC: Primary 10D05; Secondary 35J05
Language: English
Original paper language: Russian
Citation: A. B. Venkov, “Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace–Beltrami operator on the fundamental domain of the modular group $PSL(2,\mathbf Z)$”, Math. USSR-Izv., 12:3 (1978), 448–462
Citation in format AMSBIB
\Bibitem{Ven78}
\by A.~B.~Venkov
\paper Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$
\jour Math. USSR-Izv.
\yr 1978
\vol 12
\issue 3
\pages 448--462
\mathnet{http://mi.mathnet.ru//eng/im1776}
\crossref{https://doi.org/10.1070/IM1978v012n03ABEH001991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=480349}
\zmath{https://zbmath.org/?q=an:0392.43015|0416.43010}
Linking options:
  • https://www.mathnet.ru/eng/im1776
  • https://doi.org/10.1070/IM1978v012n03ABEH001991
  • https://www.mathnet.ru/eng/im/v42/i3/p484
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:434
    Russian version PDF:174
    English version PDF:18
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024