Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1982, Volume 19, Issue 3, Pages 495–520
DOI: https://doi.org/10.1070/IM1982v019n03ABEH001426
(Mi im1714)
 

This article is cited in 6 scientific papers (total in 6 papers)

On residues in algebraic geometry

V. G. Lomadze
References:
Abstract: Let $f\colon X\to S$ be a dominant morphism of algebraic schemes, with $S$ integral. Let $n$ be the relative dimension of $f$ and let $x=(x_0,x_1,\dots,x_n)$ be a sequence of points of $X$ such that, for all $0\leqslant i\leqslant n$, $x_i$ is a specialization of $x_{i-1}$, has codimension $i$ and is mapped into the generic point of $S$. Under these conditions a residue mapping (of $f$ into the “chain” $x$)
$$ \operatorname{Res}_x^f\colon\Omega^*(X)\to\Omega^*(S) $$
is defined and its main properties, in particular the “residue formula”, are proved.
Bibliography: 14 titles.
Received: 04.12.1980
Bibliographic databases:
UDC: 513.6
MSC: Primary 14A15; Secondary 13J10, 13H99, 14B05
Language: English
Original paper language: Russian
Citation: V. G. Lomadze, “On residues in algebraic geometry”, Math. USSR-Izv., 19:3 (1982), 495–520
Citation in format AMSBIB
\Bibitem{Lom81}
\by V.~G.~Lomadze
\paper On~residues in algebraic geometry
\jour Math. USSR-Izv.
\yr 1982
\vol 19
\issue 3
\pages 495--520
\mathnet{http://mi.mathnet.ru//eng/im1714}
\crossref{https://doi.org/10.1070/IM1982v019n03ABEH001426}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=641802}
\zmath{https://zbmath.org/?q=an:0528.14003}
Linking options:
  • https://www.mathnet.ru/eng/im1714
  • https://doi.org/10.1070/IM1982v019n03ABEH001426
  • https://www.mathnet.ru/eng/im/v45/i6/p1258
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024