Abstract:
In this work it is shown that all the eigenfunctions of the one-dimensional random Schröger operator H=−d2/dt2+q(t,ω), t∈R1, with random potential q(t,ω), ω∈Ω, of Markov type decrease exponentially with probability 1. This confirms an old conjecture of N. F. Mott which has been discussed many times in the physics literature.
Bibliography: 14 titles.
\Bibitem{Mol78}
\by S.~A.~Molchanov
\paper The structure of eigenfunctions of one-dimensional unordered structures
\jour Math. USSR-Izv.
\yr 1978
\vol 12
\issue 1
\pages 69--101
\mathnet{http://mi.mathnet.ru/eng/im1692}
\crossref{https://doi.org/10.1070/IM1978v012n01ABEH001841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=486981}
\zmath{https://zbmath.org/?q=an:0386.34029|0401.34023}
Linking options:
https://www.mathnet.ru/eng/im1692
https://doi.org/10.1070/IM1978v012n01ABEH001841
https://www.mathnet.ru/eng/im/v42/i1/p70
This publication is cited in the following 81 articles:
Florian Rupp, “Construction of mean-square Lyapunov-basins for random ordinary differential equations”, JCD, 10:1 (2023), 210
M. Aizenman, B. R. Vainberg, I. Ya. Goldsheid, S. Ya. Zhitomirskaya, L. A. Pastur, A. Klein, V. D. Konakov, M. Cranston, B. Simon, V. Jakšić, “Stanislav Alekseevich Molchanov (on his 80th birthday)”, Russian Math. Surveys, 76:5 (2021), 943–949
Wu Jiancheng, Liu Xianbin, “Moment stability of viscoelastic system influenced by non-Gaussian colored noise”, Journal of Sound and Vibration, 502 (2021), 116080
Jiancheng Wu, Xuan Li, Xianbin Liu, “The moment Lyapunov exponent of a co-dimension two bifurcation system driven by non-Gaussian colored noise”, Applied Mathematics and Computation, 286 (2016), 189
H. Makino, N. Minami, “E(K, L) level statistics of classically integrable quantum systems based on the Berry-Robnik approach”, Progress of Theoretical and Experimental Physics, 2014:7 (2014), 73A01
Xuan Li, Xianbin Liu, “The moment Lyapunov exponent for a three-dimensional stochastic system”, Chaos, Solitons & Fractals, 68 (2014), 40
Volker Wihstutz, “Noise Induced Resonance versus Mixing of Modes. A Study”, Procedia IUTAM, 6 (2013), 180
X. Li, X. B. Liu, “Moment Lyapunov exponent and stochastic stability for a binary airfoil driven by an ergodic real noise”, Nonlinear Dyn, 2013
Sheng-hong Li, Xian-bin Liu, “Moment Lyapunov exponent for three-dimensional system under real noise excitation”, Appl. Math. Mech.-Engl. Ed, 2013
Martin Tautenhahn, Ivan Veselić, “Minami’s Estimate: Beyond Rank One Perturbation and Monotonicity”, Ann. Henri Poincaré, 2013
F.M. Izrailev, A.A. Krokhin, N.M. Makarov, “Anomalous localization in low-dimensional systems with correlated disorder”, Physics Reports, 2011
H. Makino, N. Minami, S. Tasaki, “Statistical properties of spectral fluctuations for a quantum system with infinitely many components”, Phys Rev E, 79:3 (2009), 036201
Brian F. Farrell, Petros J. Ioannou, “The Stochastic Parametric Mechanism for Growth of Wind-Driven Surface Water Waves”, J Phys Oceanogr, 38:4 (2008), 862
N. Sri Namachchivaya, H. J. Van Roessel, “Stochastic Stability of Coupled Oscillators in Resonance: A Perturbation Approach”, J Appl Mech, 71:6 (2004), 759
H. Makino, S. Tasaki, “Level spacing statistics of classically integrable systems: Investigation along the lines of the Berry-Robnik approach”, Phys Rev E, 67:6 (2003), 066205
Isao Tomita, “Persistent current in a one-dimensional correlated disordered ring”, Physica A: Statistical Mechanics and its Applications, 308:1-4 (2002), 1
Roman V. Bobryk, Andrzej Chrzeszczyk, “Colored-noise-induced parametric resonance”, Physica A: Statistical Mechanics and its Applications, 316:1-4 (2002), 225
N. Sri Namachchivaya, H. J. Van Roessel, “Moment Lyapunov Exponent and Stochastic Stability of Two Coupled Oscillators Driven by Real Noise”, J Appl Mech, 68:6 (2001), 903
A. Fechner, Landolt-Börnstein - Group III Condensed Matter, 34B1, Electronic Transport. Part 1: Quantum Point Contacts and Quantum Wires, 2001, 307
A. Fechner, Landolt-Börnstein - Group III Condensed Matter, 34B1, Electronic Transport. Part 1: Quantum Point Contacts and Quantum Wires, 2001, 296