Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1978, Volume 12, Issue 1, Pages 69–101
DOI: https://doi.org/10.1070/IM1978v012n01ABEH001841
(Mi im1692)
 

This article is cited in 80 scientific papers (total in 81 papers)

The structure of eigenfunctions of one-dimensional unordered structures

S. A. Molchanov
References:
Abstract: In this work it is shown that all the eigenfunctions of the one-dimensional random Schröger operator H=d2/dt2+q(t,ω), tR1, with random potential q(t,ω), ωΩ, of Markov type decrease exponentially with probability 1. This confirms an old conjecture of N. F. Mott which has been discussed many times in the physics literature.
Bibliography: 14 titles.
Received: 07.01.1977
Bibliographic databases:
UDC: 517.9
MSC: 35J10, 35P99, 60H15
Language: English
Original paper language: Russian
Citation: S. A. Molchanov, “The structure of eigenfunctions of one-dimensional unordered structures”, Math. USSR-Izv., 12:1 (1978), 69–101
Citation in format AMSBIB
\Bibitem{Mol78}
\by S.~A.~Molchanov
\paper The structure of eigenfunctions of one-dimensional unordered structures
\jour Math. USSR-Izv.
\yr 1978
\vol 12
\issue 1
\pages 69--101
\mathnet{http://mi.mathnet.ru/eng/im1692}
\crossref{https://doi.org/10.1070/IM1978v012n01ABEH001841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=486981}
\zmath{https://zbmath.org/?q=an:0386.34029|0401.34023}
Linking options:
  • https://www.mathnet.ru/eng/im1692
  • https://doi.org/10.1070/IM1978v012n01ABEH001841
  • https://www.mathnet.ru/eng/im/v42/i1/p70
  • This publication is cited in the following 81 articles:
    1. Florian Rupp, “Construction of mean-square Lyapunov-basins for random ordinary differential equations”, JCD, 10:1 (2023), 210  crossref
    2. M. Aizenman, B. R. Vainberg, I. Ya. Goldsheid, S. Ya. Zhitomirskaya, L. A. Pastur, A. Klein, V. D. Konakov, M. Cranston, B. Simon, V. Jakšić, “Stanislav Alekseevich Molchanov (on his 80th birthday)”, Russian Math. Surveys, 76:5 (2021), 943–949  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Wu Jiancheng, Liu Xianbin, “Moment stability of viscoelastic system influenced by non-Gaussian colored noise”, Journal of Sound and Vibration, 502 (2021), 116080  crossref
    4. Jiancheng Wu, Xuan Li, Xianbin Liu, “The moment Lyapunov exponent of a co-dimension two bifurcation system driven by non-Gaussian colored noise”, Applied Mathematics and Computation, 286 (2016), 189  crossref
    5. H. Makino, N. Minami, “E(K, L) level statistics of classically integrable quantum systems based on the Berry-Robnik approach”, Progress of Theoretical and Experimental Physics, 2014:7 (2014), 73A01  crossref
    6. Xuan Li, Xianbin Liu, “The moment Lyapunov exponent for a three-dimensional stochastic system”, Chaos, Solitons & Fractals, 68 (2014), 40  crossref
    7. Volker Wihstutz, “Noise Induced Resonance versus Mixing of Modes. A Study”, Procedia IUTAM, 6 (2013), 180  crossref
    8. X. Li, X. B. Liu, “Moment Lyapunov exponent and stochastic stability for a binary airfoil driven by an ergodic real noise”, Nonlinear Dyn, 2013  crossref
    9. Sheng-hong Li, Xian-bin Liu, “Moment Lyapunov exponent for three-dimensional system under real noise excitation”, Appl. Math. Mech.-Engl. Ed, 2013  crossref
    10. Martin Tautenhahn, Ivan Veselić, “Minami’s Estimate: Beyond Rank One Perturbation and Monotonicity”, Ann. Henri Poincaré, 2013  crossref
    11. F.M. Izrailev, A.A. Krokhin, N.M. Makarov, “Anomalous localization in low-dimensional systems with correlated disorder”, Physics Reports, 2011  crossref
    12. H. Makino, N. Minami, S. Tasaki, “Statistical properties of spectral fluctuations for a quantum system with infinitely many components”, Phys Rev E, 79:3 (2009), 036201  crossref  adsnasa  isi
    13. Brian F. Farrell, Petros J. Ioannou, “The Stochastic Parametric Mechanism for Growth of Wind-Driven Surface Water Waves”, J Phys Oceanogr, 38:4 (2008), 862  crossref  isi
    14. N. Sri Namachchivaya, H. J. Van Roessel, “Stochastic Stability of Coupled Oscillators in Resonance: A Perturbation Approach”, J Appl Mech, 71:6 (2004), 759  crossref  mathscinet  zmath  isi
    15. H. Makino, S. Tasaki, “Level spacing statistics of classically integrable systems: Investigation along the lines of the Berry-Robnik approach”, Phys Rev E, 67:6 (2003), 066205  crossref  adsnasa  isi
    16. Isao Tomita, “Persistent current in a one-dimensional correlated disordered ring”, Physica A: Statistical Mechanics and its Applications, 308:1-4 (2002), 1  crossref
    17. Roman V. Bobryk, Andrzej Chrzeszczyk, “Colored-noise-induced parametric resonance”, Physica A: Statistical Mechanics and its Applications, 316:1-4 (2002), 225  crossref
    18. N. Sri Namachchivaya, H. J. Van Roessel, “Moment Lyapunov Exponent and Stochastic Stability of Two Coupled Oscillators Driven by Real Noise”, J Appl Mech, 68:6 (2001), 903  crossref  mathscinet  zmath
    19. A. Fechner, Landolt-Börnstein - Group III Condensed Matter, 34B1, Electronic Transport. Part 1: Quantum Point Contacts and Quantum Wires, 2001, 307  crossref
    20. A. Fechner, Landolt-Börnstein - Group III Condensed Matter, 34B1, Electronic Transport. Part 1: Quantum Point Contacts and Quantum Wires, 2001, 296  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:728
    Russian version PDF:156
    English version PDF:24
    References:99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025