Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1980, Volume 14, Issue 2, Pages 257–273
DOI: https://doi.org/10.1070/IM1980v014n02ABEH001097
(Mi im1683)
 

This article is cited in 8 scientific papers (total in 8 papers)

An integral estimate for the derivative of a rational function

V. I. Danchenko
References:
Abstract: Let there be given numbers $\alpha,q,\lambda,p$ and $n$, $0<\alpha<\infty$, $1\leqslant q\leqslant\infty$, $0<\lambda\leqslant\infty$, $1<p\leqslant\infty$, $n=1,2,\dots$, and let $R(n,p)$ be the class of rational functions $\rho(z)$ of degree $\leqslant n$, analytic for $|z|\leqslant1$, with
\begin{gather*} \|\rho\|_p=\biggl(\,\int_{|\zeta|=1}|\rho(\zeta)|^p\,|d\zeta|\biggr)^{1/p}\leqslant1\\ (\|\rho\|_\infty=\sup\{|\rho(z)|:|z|=1\}). \end{gather*}
It is proved that, if $\alpha\geqslant1+p^{-1}-q^{-1}$, then
$$ \sup\biggl\{\biggl[\,\int_0^1(1-r)^{\alpha\lambda-1}\biggl(\,\int_0^{2\pi}|\rho(r\cdot e^{i\varphi}|^q\,d\varphi\biggr)^{\lambda/q}\,dr\biggr]^{1/\lambda}:\rho\in R(n,p)\biggr\}<\infty. $$

Bibliography: 6 titles.
Received: 13.03.1978
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1979, Volume 43, Issue 2, Pages 277–293
Bibliographic databases:
UDC: 517.5
MSC: 30E10, 41A20
Language: English
Original paper language: Russian
Citation: V. I. Danchenko, “An integral estimate for the derivative of a rational function”, Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979), 277–293; Math. USSR-Izv., 14:2 (1980), 257–273
Citation in format AMSBIB
\Bibitem{Dan79}
\by V.~I.~Danchenko
\paper An~integral estimate for the derivative of a~rational function
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1979
\vol 43
\issue 2
\pages 277--293
\mathnet{http://mi.mathnet.ru/im1683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=534594}
\zmath{https://zbmath.org/?q=an:0443.30050|0413.30030}
\transl
\jour Math. USSR-Izv.
\yr 1980
\vol 14
\issue 2
\pages 257--273
\crossref{https://doi.org/10.1070/IM1980v014n02ABEH001097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM96800003}
Linking options:
  • https://www.mathnet.ru/eng/im1683
  • https://doi.org/10.1070/IM1980v014n02ABEH001097
  • https://www.mathnet.ru/eng/im/v43/i2/p277
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:375
    Russian version PDF:95
    English version PDF:6
    References:39
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024