|
This article is cited in 8 scientific papers (total in 8 papers)
An integral estimate for the derivative of a rational function
V. I. Danchenko
Abstract:
Let there be given numbers $\alpha,q,\lambda,p$ and $n$, $0<\alpha<\infty$, $1\leqslant q\leqslant\infty$, $0<\lambda\leqslant\infty$, $1<p\leqslant\infty$, $n=1,2,\dots$, and let $R(n,p)$ be the class of rational functions $\rho(z)$ of degree $\leqslant n$, analytic for $|z|\leqslant1$, with
\begin{gather*}
\|\rho\|_p=\biggl(\,\int_{|\zeta|=1}|\rho(\zeta)|^p\,|d\zeta|\biggr)^{1/p}\leqslant1\\
(\|\rho\|_\infty=\sup\{|\rho(z)|:|z|=1\}).
\end{gather*}
It is proved that, if $\alpha\geqslant1+p^{-1}-q^{-1}$, then
$$
\sup\biggl\{\biggl[\,\int_0^1(1-r)^{\alpha\lambda-1}\biggl(\,\int_0^{2\pi}|\rho(r\cdot e^{i\varphi}|^q\,d\varphi\biggr)^{\lambda/q}\,dr\biggr]^{1/\lambda}:\rho\in R(n,p)\biggr\}<\infty.
$$
Bibliography: 6 titles.
Received: 13.03.1978
Citation:
V. I. Danchenko, “An integral estimate for the derivative of a rational function”, Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979), 277–293; Math. USSR-Izv., 14:2 (1980), 257–273
Linking options:
https://www.mathnet.ru/eng/im1683https://doi.org/10.1070/IM1980v014n02ABEH001097 https://www.mathnet.ru/eng/im/v43/i2/p277
|
Statistics & downloads: |
Abstract page: | 375 | Russian version PDF: | 95 | English version PDF: | 6 | References: | 39 | First page: | 1 |
|