Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 21, Issue 1, Pages 1–29
DOI: https://doi.org/10.1070/IM1983v021n01ABEH001637
(Mi im1639)
 

This article is cited in 26 scientific papers (total in 28 papers)

On generic properties of closed geodesics

D. V. Anosov
References:
Abstract: A complete proof is given of the theorem asserting that bumpy metrics are generic. This result was announced by Abraham (Global Analysis (Proc. Sympos. Pure Math., vol 14), Amer. Math. Soc., Providence, R. I., 1970, pp. 1–3.). Related results are used to rigourously carry out Poincaré's outline of a “bifurcation-theoretic” proof of the existence of closed geodesics without self-intersections for any Riemannian metric of positive curvature on the two-dimensional sphere $S^2$. To do this, it is essential that the lengths of all non-self-intersecting closed geodesics for the metrics on $S^2$, considered in the course of the proof, be uniformly bounded from above. Examples are given of $C^\infty$ metrics on $S^2$ (where the sign of the curvature alternates) for which there exist arbitrarily long closed geodesics without self-intersections.
Bibliography: 27 titles.
Received: 15.03.1982
Bibliographic databases:
Document Type: Article
UDC: 513.78+517.9
MSC: Primary 53C22; Secondary 58F17, 58F22
Language: English
Original paper language: Russian
Citation: D. V. Anosov, “On generic properties of closed geodesics”, Math. USSR-Izv., 21:1 (1983), 1–29
Citation in format AMSBIB
\Bibitem{Ano82}
\by D.~V.~Anosov
\paper On generic properties of closed geodesics
\jour Math. USSR-Izv.
\yr 1983
\vol 21
\issue 1
\pages 1--29
\mathnet{http://mi.mathnet.ru/eng/im1639}
\crossref{https://doi.org/10.1070/IM1983v021n01ABEH001637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=670163}
\zmath{https://zbmath.org/?q=an:0554.58043|0512.58014}
Linking options:
  • https://www.mathnet.ru/eng/im1639
  • https://doi.org/10.1070/IM1983v021n01ABEH001637
  • https://www.mathnet.ru/eng/im/v46/i4/p675
  • This publication is cited in the following 28 articles:
    1. Joonas Ilmavirta, Maarten V. de Hoop, Vitaly Katsnelson, “Spherically Symmetric Terrestrial Planets with Discontinuities Are Spectrally Rigid”, Commun. Math. Phys., 405:2 (2024)  crossref
    2. Hans-Bert Rademacher, “Simple closed geodesics in dimensions $\ge 3$”, J. Fixed Point Theory Appl., 26:1 (2024)  crossref
    3. Hans-Bert Rademacher, “Upper bounds for the critical values of homology classes of loops”, manuscripta math., 2024  crossref
    4. Andrew Clarke, “Geodesics with Unbounded Speed on Fluctuating Surfaces”, Regul. Chaotic Dyn., 29:3 (2024), 435–450  mathnet  crossref
    5. Alexandr Grebennikov, “Multiplicities in the Length Spectrum and Growth Rate of Salem Numbers”, Bull Braz Math Soc, New Series, 55:2 (2024)  crossref
    6. Cayo Dória, Emanoel Freire, Plinio Murillo, “Hyperbolic manifolds with a large number of systoles”, Trans. Amer. Math. Soc., 377:2 (2023), 1247  crossref
    7. Andrew Clarke, “Generic properties of geodesic flows on analytic hypersurfaces of Euclidean space”, DCDS, 42:12 (2022), 5839  crossref
    8. Hans-Bert Rademacher, Iskander A. Taimanov, “The second closed geodesic, the fundamental group, and generic Finsler metrics”, Math. Z., 302:1 (2022), 629  crossref
    9. Craig Sutton, “On the Poisson relation for compact Lie groups”, Ann Glob Anal Geom, 57:4 (2020), 537  crossref
    10. Luca Asselle, Maciej Starostka, “The Palais–Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications”, Calc. Var., 59:4 (2020)  crossref
    11. Hans-Bert Rademacher, “Bumpy metrics on spheres and minimal index growth”, J. Fixed Point Theory Appl., 19:1 (2017), 289  crossref
    12. Mário Bessa, M.J.oana Torres, “The <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math> general density theorem for geodesic flows”, Comptes Rendus Mathematique, 2015  crossref
    13. S. M. Aseev, V. M. Buchstaber, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, A. A. Davydov, A. Yu. Zhirov, E. V. Zhuzhoma, M. I. Zelikin, A. B. Katok, A. V. Klimenko, V. V. Kozlov, V. P. Leksin, M. I. Monastyrskii, A. I. Neishtadt, S. P. Novikov, E. A. Sataev, Ya. G. Sinai, A. M. Stepin, “Dmitrii Viktorovich Anosov (obituary)”, Russian Math. Surveys, 70:2 (2015), 369–381  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. I. V. Sypchenko, D. S. Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Sb. Math., 206:5 (2015), 738–769  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. Takeshi Isobe, “On the existence of nonlinear Dirac-geodesics on compact manifolds”, Calc. Var, 2011  crossref
    16. I. A. Taimanov, “The type numbers of closed geodesics”, Reg Chaot Dyn, 15:1 (2010), 84  crossref  isi  elib
    17. Gonzalo Contreras, “Geodesic flows with positive topological entropy, twist maps and hyperbolicity”, Ann of Math, 172:2 (2010), 761  crossref
    18. Brian R. Hunt, Vadim Yu. Kaloshin, Handbook of Dynamical Systems, 3, 2010, 43  crossref
    19. Ivan Kupka, Mauricio Peixoto, Charles Pugh, “Focal stability of Riemann metrics”, crll, 2006:593 (2006), 31  crossref  mathscinet  isi
    20. D. V. Anosov, Mathematical Events of the Twentieth Century, 2006, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:657
    Russian version PDF:256
    English version PDF:35
    References:95
    First page:7
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025