Abstract:
A complete proof is given of the theorem asserting that bumpy metrics are generic. This result was announced by Abraham (Global Analysis (Proc. Sympos. Pure Math., vol 14), Amer. Math. Soc., Providence, R. I., 1970, pp. 1–3.). Related results are used to rigourously carry out Poincaré's outline of a “bifurcation-theoretic” proof of the existence of closed geodesics without self-intersections for any Riemannian metric of positive curvature on the two-dimensional sphere $S^2$. To do this, it is essential that the lengths of all non-self-intersecting closed geodesics for the metrics on $S^2$, considered in the course of the proof, be uniformly bounded from above. Examples are given of $C^\infty$ metrics on $S^2$ (where the sign of the curvature alternates) for which there exist arbitrarily long closed geodesics without self-intersections.
Bibliography: 27 titles.
This publication is cited in the following 28 articles:
Joonas Ilmavirta, Maarten V. de Hoop, Vitaly Katsnelson, “Spherically Symmetric Terrestrial Planets with Discontinuities Are Spectrally Rigid”, Commun. Math. Phys., 405:2 (2024)
Hans-Bert Rademacher, “Simple closed geodesics in dimensions $\ge 3$”, J. Fixed Point Theory Appl., 26:1 (2024)
Hans-Bert Rademacher, “Upper bounds for the critical values of homology classes of loops”, manuscripta math., 2024
Andrew Clarke, “Geodesics with Unbounded Speed on Fluctuating Surfaces”, Regul. Chaotic Dyn., 29:3 (2024), 435–450
Alexandr Grebennikov, “Multiplicities in the Length Spectrum and Growth Rate of Salem Numbers”, Bull Braz Math Soc, New Series, 55:2 (2024)
Cayo Dória, Emanoel Freire, Plinio Murillo, “Hyperbolic manifolds with a large number of systoles”, Trans. Amer. Math. Soc., 377:2 (2023), 1247
Andrew Clarke, “Generic properties of geodesic flows on analytic hypersurfaces of Euclidean space”, DCDS, 42:12 (2022), 5839
Hans-Bert Rademacher, Iskander A. Taimanov, “The second closed geodesic, the fundamental group, and generic Finsler metrics”, Math. Z., 302:1 (2022), 629
Craig Sutton, “On the Poisson relation for compact Lie groups”, Ann Glob Anal Geom, 57:4 (2020), 537
Luca Asselle, Maciej Starostka, “The Palais–Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications”, Calc. Var., 59:4 (2020)
Hans-Bert Rademacher, “Bumpy metrics on spheres and minimal index growth”, J. Fixed Point Theory Appl., 19:1 (2017), 289
Mário Bessa, M.J.oana Torres, “The <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math> general density theorem for geodesic flows”, Comptes Rendus Mathematique, 2015
S. M. Aseev, V. M. Buchstaber, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, A. A. Davydov, A. Yu. Zhirov, E. V. Zhuzhoma, M. I. Zelikin, A. B. Katok, A. V. Klimenko, V. V. Kozlov, V. P. Leksin, M. I. Monastyrskii, A. I. Neishtadt, S. P. Novikov, E. A. Sataev, Ya. G. Sinai, A. M. Stepin, “Dmitrii Viktorovich Anosov (obituary)”, Russian Math. Surveys, 70:2 (2015), 369–381
I. V. Sypchenko, D. S. Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Sb. Math., 206:5 (2015), 738–769
Takeshi Isobe, “On the existence of nonlinear Dirac-geodesics on compact manifolds”, Calc. Var, 2011
I. A. Taimanov, “The type numbers of closed geodesics”, Reg Chaot Dyn, 15:1 (2010), 84
Gonzalo Contreras, “Geodesic flows with positive topological entropy, twist maps and hyperbolicity”, Ann of Math, 172:2 (2010), 761
Brian R. Hunt, Vadim Yu. Kaloshin, Handbook of Dynamical Systems, 3, 2010, 43
Ivan Kupka, Mauricio Peixoto, Charles Pugh, “Focal stability of Riemann metrics”, crll, 2006:593 (2006), 31
D. V. Anosov, Mathematical Events of the Twentieth Century, 2006, 1