Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 20, Issue 1, Pages 119–135
DOI: https://doi.org/10.1070/IM1983v020n01ABEH001343
(Mi im1609)
 

This article is cited in 5 scientific papers (total in 6 papers)

The influence of height on degenerations of algebraic surfaces of type $K3$

A. N. Rudakov, T. Tsink, I. R. Shafarevich
References:
Abstract: The authors announce the conjecture that a family of $K3$ surfaces the Artin height of whose generic fiber is greater than $2$ does not degenerate; they prove this conjecture for surfaces of degree $2$. As a corollary it is shown that a family of supersingular $K3$ surfaces does not degenerate; i.e., its variety of moduli is complete.
Bibliography: 18 titles.
Received: 03.08.1981
Bibliographic databases:
Document Type: Article
UDC: 513.6
MSC: Primary 14J25; Secondary 14L05
Language: English
Original paper language: Russian
Citation: A. N. Rudakov, T. Tsink, I. R. Shafarevich, “The influence of height on degenerations of algebraic surfaces of type $K3$”, Math. USSR-Izv., 20:1 (1983), 119–135
Citation in format AMSBIB
\Bibitem{RudTsiSha82}
\by A.~N.~Rudakov, T.~Tsink, I.~R.~Shafarevich
\paper The influence of height on degenerations of algebraic surfaces of type~$K3$
\jour Math. USSR-Izv.
\yr 1983
\vol 20
\issue 1
\pages 119--135
\mathnet{http://mi.mathnet.ru//eng/im1609}
\crossref{https://doi.org/10.1070/IM1983v020n01ABEH001343}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=643897}
\zmath{https://zbmath.org/?q=an:0509.14036|0492.14024}
Linking options:
  • https://www.mathnet.ru/eng/im1609
  • https://doi.org/10.1070/IM1983v020n01ABEH001343
  • https://www.mathnet.ru/eng/im/v46/i1/p117
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024