Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1980, Volume 14, Issue 1, Pages 1–16
DOI: https://doi.org/10.1070/IM1980v014n01ABEH001057
(Mi im1574)
 

This article is cited in 5 scientific papers (total in 5 papers)

The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic

A. I. Gryuntal'
References:
Abstract: In this paper it is shown that in any C1C1-neighborhood of the standard metric H0H0 on S2S2, there exists a subset consisting of convex metrics, which is open in the C2C2-topology, and all of whose closed nonselfintersecting geodesics are hyperbolic.
Bibliography: 13 titles.
Received: 13.06.1978
Bibliographic databases:
UDC: 517.9
MSC: Primary 53C20, 58C99; Secondary 34C40
Language: English
Original paper language: Russian
Citation: A. I. Gryuntal', “The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic”, Math. USSR-Izv., 14:1 (1980), 1–16
Citation in format AMSBIB
\Bibitem{Gry79}
\by A.~I.~Gryuntal'
\paper The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic
\jour Math. USSR-Izv.
\yr 1980
\vol 14
\issue 1
\pages 1--16
\mathnet{http://mi.mathnet.ru/eng/im1574}
\crossref{https://doi.org/10.1070/IM1980v014n01ABEH001057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=525939}
\zmath{https://zbmath.org/?q=an:0433.53032|0403.53021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM22000001}
Linking options:
  • https://www.mathnet.ru/eng/im1574
  • https://doi.org/10.1070/IM1980v014n01ABEH001057
  • https://www.mathnet.ru/eng/im/v43/i1/p3
  • This publication is cited in the following 5 articles:
    1. Gonzalo Contreras, Marco Mazzucchelli, “Proof of the C2-stability conjecture for geodesic flows of closed surfaces”, Duke Math. J., 173:2 (2024)  crossref
    2. Yi-ming Long, “Index iteration theory for symplectic paths and multiple periodic solution orbits”, Front Math China, 1:2 (2006), 178  crossref  mathscinet
    3. Jean-Jacques Sansuc, Vadim Tkachenko, Algebraic and Geometric Methods in Mathematical Physics, 1996, 371  crossref
    4. I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. M.S Berger, E Bombieri, “On Poincaré's isoperimetric problem for simple closed geodesics”, Journal of Functional Analysis, 42:3 (1981), 274  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:385
    Russian version PDF:117
    English version PDF:16
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025