Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1985, Volume 25, Issue 3, Pages 475–500
DOI: https://doi.org/10.1070/IM1985v025n03ABEH001300
(Mi im1513)
 

This article is cited in 3 scientific papers (total in 3 papers)

Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III

A. G. Eliseev
References:
Abstract: This paper is the third part of work dealing with the construction of a regularized asymptotic expression for the solution of a nonhomogeneous Cauchy problem in a finite-dimensional space $E$. The limit operator has a Jordan structure. On the lines of the theory of branching a method is given for describing all possible singularities of the problem in the case when the structure matrix has degeneracies. As an example, a complete analysis of a Cauchy problem is given in three-dimensional space, along with a certain case in four-dimensional space.
Bibliography: 4 titles.
Received: 09.02.1982
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1984, Volume 48, Issue 6, Pages 1171–1195
Bibliographic databases:
UDC: 517.91/93
MSC: Primary 34A10, 34E05, 34E15, 34G10; Secondary 47A53, 47A55
Language: English
Original paper language: Russian
Citation: A. G. Eliseev, “Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III”, Izv. Akad. Nauk SSSR Ser. Mat., 48:6 (1984), 1171–1195; Math. USSR-Izv., 25:3 (1985), 475–500
Citation in format AMSBIB
\Bibitem{Eli84}
\by A.~G.~Eliseev
\paper Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~III
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1984
\vol 48
\issue 6
\pages 1171--1195
\mathnet{http://mi.mathnet.ru/im1513}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=772111}
\zmath{https://zbmath.org/?q=an:0658.34052}
\transl
\jour Math. USSR-Izv.
\yr 1985
\vol 25
\issue 3
\pages 475--500
\crossref{https://doi.org/10.1070/IM1985v025n03ABEH001300}
Linking options:
  • https://www.mathnet.ru/eng/im1513
  • https://doi.org/10.1070/IM1985v025n03ABEH001300
  • https://www.mathnet.ru/eng/im/v48/i6/p1171
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:256
    Russian version PDF:97
    English version PDF:13
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024