Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 5, Pages 933–959
DOI: https://doi.org/10.1070/im1997v061n05ABEH000150
(Mi im150)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a weak (algebraic) extremum principle for a second-order parabolic system

L. A. Kamynin, B. N. Khimchenko
References:
Abstract: The notion of a weak “algebraic” extremum principle (WAEP) is introduced for second-order parabolic systems. It is based on the representation of the (coefficient) matrix of the system as a sum of matrices that are similar to diagonal matrices and nilpotent matrices, and on the reduction of the system to a single equation. The validity of the WAEP is proved for a rather broad class of second-order parabolic systems with “full mixing”. The WAEP is applied to prove the uniqueness of the solution of the first boundary-value problem for the parabolic systems in question.
Received: 20.11.1995
Bibliographic databases:
MSC: 35K50, 35B50
Language: English
Original paper language: Russian
Citation: L. A. Kamynin, B. N. Khimchenko, “On a weak (algebraic) extremum principle for a second-order parabolic system”, Izv. Math., 61:5 (1997), 933–959
Citation in format AMSBIB
\Bibitem{KamKhi97}
\by L.~A.~Kamynin, B.~N.~Khimchenko
\paper On a~weak (algebraic) extremum principle for a~second-order parabolic system
\jour Izv. Math.
\yr 1997
\vol 61
\issue 5
\pages 933--959
\mathnet{http://mi.mathnet.ru//eng/im150}
\crossref{https://doi.org/10.1070/im1997v061n05ABEH000150}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1486697}
\zmath{https://zbmath.org/?q=an:0893.35045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071929200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746786435}
Linking options:
  • https://www.mathnet.ru/eng/im150
  • https://doi.org/10.1070/im1997v061n05ABEH000150
  • https://www.mathnet.ru/eng/im/v61/i5/p35
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024