Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 28, Issue 2, Pages 233–273
DOI: https://doi.org/10.1070/IM1987v028n02ABEH000880
(Mi im1479)
 

This article is cited in 7 scientific papers (total in 8 papers)

Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients

V. A. Vassiliev
References:
Abstract: It is proved that for almost all hyperbolic operators with constant coefficients analytic sharpness of the fundamental solution everywhere is equivalent to the local Petrovskii condition. In the proximity of simple ($O$-modal) singularities of wave front sets the author finds all domains from one side of which there is sharpness.
Bibliography: 24 titles.
Received: 27.02.1984
Bibliographic databases:
Document Type: Article
UDC: 517.4
MSC: Primary 35L30; Secondary 35E15, 57R45
Language: English
Original paper language: Russian
Citation: V. A. Vassiliev, “Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients”, Math. USSR-Izv., 28:2 (1987), 233–273
Citation in format AMSBIB
\Bibitem{Vas86}
\by V.~A.~Vassiliev
\paper Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
\jour Math. USSR-Izv.
\yr 1987
\vol 28
\issue 2
\pages 233--273
\mathnet{http://mi.mathnet.ru//eng/im1479}
\crossref{https://doi.org/10.1070/IM1987v028n02ABEH000880}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=842583}
\zmath{https://zbmath.org/?q=an:0615.35012}
Linking options:
  • https://www.mathnet.ru/eng/im1479
  • https://doi.org/10.1070/IM1987v028n02ABEH000880
  • https://www.mathnet.ru/eng/im/v50/i2/p242
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024