Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 28, Issue 1, Pages 37–66
DOI: https://doi.org/10.1070/IM1987v028n01ABEH000866
(Mi im1470)
 

This article is cited in 2 scientific papers (total in 2 papers)

On a boundary value problem for the time-dependent Stokes system with general boundary conditions

I. Sh. Mogilevskii
References:
Abstract: Solvability in Sobolev spaces $W_q^{2l,l}$ is proved and properties of solutions are investigated for the following initial boundary value problem:
\begin{gather*} \frac{\partial\bar{\mathbf u}}{\partial t}=\nabla^2\bar{\mathbf v}+\nabla p=\bar{\mathbf f},\qquad\nabla\cdot\bar{\mathbf v}=\rho\quad\text{in}\quad Q_T=\Omega\times(0,T),\\ \bar{\mathbf v}|_{t=0}=\bar v^0,\qquad B\biggl(x,t,\frac\partial{\partial x},\frac\partial{\partial t}\biggr)(\bar{\mathbf v},p)\Bigr|_{x\in\partial\Omega}=\bar{\mathbf\Phi}, \end{gather*}
where $\Omega$ is a bounded domain in $\mathbf R^3$ with smooth boundary, and $B$ is a matrix differential operator.
It is proved that under particular conditions imposed on the data of the problem and boundary operator $B$ there exists a solution $\bar{\mathbf v}\in W_q^{2l,l}(Q_T)$, $\nabla\rho\in W_q^{2l-2,l-1}(Q_T)$. The question of necessity of these conditions is investigated.
Bibliography: 18 titles.
Received: 09.06.1983
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1986, Volume 50, Issue 1, Pages 37–66
Bibliographic databases:
UDC: 517.946
MSC: 35Q10, 76D05
Language: English
Original paper language: Russian
Citation: I. Sh. Mogilevskii, “On a boundary value problem for the time-dependent Stokes system with general boundary conditions”, Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986), 37–66; Math. USSR-Izv., 28:1 (1987), 37–66
Citation in format AMSBIB
\Bibitem{Mog86}
\by I.~Sh.~Mogilevskii
\paper On a~boundary value problem for the time-dependent Stokes system with general boundary conditions
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1986
\vol 50
\issue 1
\pages 37--66
\mathnet{http://mi.mathnet.ru/im1470}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=835565}
\zmath{https://zbmath.org/?q=an:0615.35077}
\transl
\jour Math. USSR-Izv.
\yr 1987
\vol 28
\issue 1
\pages 37--66
\crossref{https://doi.org/10.1070/IM1987v028n01ABEH000866}
Linking options:
  • https://www.mathnet.ru/eng/im1470
  • https://doi.org/10.1070/IM1987v028n01ABEH000866
  • https://www.mathnet.ru/eng/im/v50/i1/p37
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:433
    Russian version PDF:102
    English version PDF:19
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024