Abstract:
Systems of generators of normalizers are determined for certain elements of the braid group Bn+1. These systems of generators consist of fewer than 2n explicitly written words in the positive alphabet of Bn+1.
Bibliography: 10 titles.
\Bibitem{Gur84}
\by G.~G.~Gurzo
\paper Systems of generators for the normalizers of certain elements of the braid group
\jour Math. USSR-Izv.
\yr 1985
\vol 24
\issue 3
\pages 439--478
\mathnet{http://mi.mathnet.ru/eng/im1454}
\crossref{https://doi.org/10.1070/IM1985v024n03ABEH001244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=747249}
\zmath{https://zbmath.org/?q=an:0565.20020|0548.20022}
Linking options:
https://www.mathnet.ru/eng/im1454
https://doi.org/10.1070/IM1985v024n03ABEH001244
https://www.mathnet.ru/eng/im/v48/i3/p476
This publication is cited in the following 5 articles:
Neeraj K. Dhanwani, Hitesh Raundal, Mahender Singh, “Presentations of Dehn quandles”, Journal of Algebra, 636 (2023), 207
Arkadius Kalka, Eran Liberman, Mina Teicher, “A Note on the Shifted Conjugacy Problem in Braid Groups”, Groups – Complexity – Cryptology, 1:2 (2009), 227
STEPHEN P. HUMPHRIES, “SOME LINEAR REPRESENTATIONS OF BRAID GROUPS”, J. Knot Theory Ramifications, 09:03 (2000), 341
A. M. Akimenkov, “On normalizers of colored braids”, Math. Notes, 51:5 (1992), 427–432
G. G. Gurzo, “Systems of generators for centralizers of rigid elements of the braid group”, Math. USSR-Izv., 31:2 (1988), 223–244