Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1985, Volume 24, Issue 2, Pages 283–305
DOI: https://doi.org/10.1070/IM1985v024n02ABEH001232
(Mi im1447)
 

This article is cited in 6 scientific papers (total in 6 papers)

A new correction theorem

S. V. Kislyakov
References:
Abstract: The author proves an analogue of Men'shov's theorem (on correction up to a function with uniformly convergent Fourier series) for an arbitrary locally compact Abelian group of finite topological dimension. The spectrum of the corrected function can be placed in a prescribed “sparse” set.
Bibliography: 11 titles.
Received: 17.05.1983
Bibliographic databases:
UDC: 517.513
MSC: 43A25, 43A46
Language: English
Original paper language: Russian
Citation: S. V. Kislyakov, “A new correction theorem”, Math. USSR-Izv., 24:2 (1985), 283–305
Citation in format AMSBIB
\Bibitem{Kis84}
\by S.~V.~Kislyakov
\paper A~new correction theorem
\jour Math. USSR-Izv.
\yr 1985
\vol 24
\issue 2
\pages 283--305
\mathnet{http://mi.mathnet.ru//eng/im1447}
\crossref{https://doi.org/10.1070/IM1985v024n02ABEH001232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=740793}
\zmath{https://zbmath.org/?q=an:0556.43004|0541.43003}
Linking options:
  • https://www.mathnet.ru/eng/im1447
  • https://doi.org/10.1070/IM1985v024n02ABEH001232
  • https://www.mathnet.ru/eng/im/v48/i2/p305
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:598
    Russian version PDF:189
    English version PDF:20
    References:94
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024