Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 23, Issue 2, Pages 367–389
DOI: https://doi.org/10.1070/IM1984v023n02ABEH001775
(Mi im1437)
 

This article is cited in 2 scientific papers (total in 2 papers)

An estimate of the variation of a normal parameter of a chain on a pseudoconvex surface

N. G. Kruzhilin
References:
Abstract: On a strictly pseudoconvex hypersurface in a complex manifold, there exists a biholomorphically invariant family of curves called the chains. On each chain one can pick out a certain family of parametrizations called the normal parametrizations. In this paper it is shown that, if the angle between a chain and the complex tangent space to the hypersurface is not separated from zero, then the interval of variation of any normal parameter on the chain is unbounded.
Bibliography: 6 titles.
Received: 12.04.1983
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1983, Volume 47, Issue 5, Pages 1091–1113
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 32F25; Secondary 32D15
Language: English
Original paper language: Russian
Citation: N. G. Kruzhilin, “An estimate of the variation of a normal parameter of a chain on a pseudoconvex surface”, Izv. Akad. Nauk SSSR Ser. Mat., 47:5 (1983), 1091–1113; Math. USSR-Izv., 23:2 (1984), 367–389
Citation in format AMSBIB
\Bibitem{Kru83}
\by N.~G.~Kruzhilin
\paper An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1983
\vol 47
\issue 5
\pages 1091--1113
\mathnet{http://mi.mathnet.ru/im1437}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=718417}
\zmath{https://zbmath.org/?q=an:0579.32033}
\transl
\jour Math. USSR-Izv.
\yr 1984
\vol 23
\issue 2
\pages 367--389
\crossref{https://doi.org/10.1070/IM1984v023n02ABEH001775}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983AAQ4500007}
Linking options:
  • https://www.mathnet.ru/eng/im1437
  • https://doi.org/10.1070/IM1984v023n02ABEH001775
  • https://www.mathnet.ru/eng/im/v47/i5/p1091
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:240
    Russian version PDF:66
    English version PDF:10
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024