|
This article is cited in 5 scientific papers (total in 5 papers)
On the zeros of the function $\zeta(s)$ in the neighborhood of the critical line
A. A. Karatsuba
Abstract:
The following theorem is proved. If $H\geqslant T^a$, where $T>T_0>0$ and $a>27/82$, then for $1/2<\sigma\leqslant1$ the estimate
$$
N(\sigma,T+H)-N(\sigma,T)=O\biggl(\frac{H}{\sigma-0.5}\biggr)
$$
holds uniformly in $\sigma$, where $N(\sigma_1,t)$ denotes the number of zeros $s=\sigma+it$, with $\sigma>\sigma_1$ and $0<t<T$, of the Riemann zeta-function $\zeta(s)$.
Bibliography: 4 titles.
Received: 29.11.1984
Citation:
A. A. Karatsuba, “On the zeros of the function $\zeta(s)$ in the neighborhood of the critical line”, Math. USSR-Izv., 26:2 (1986), 307–313
Linking options:
https://www.mathnet.ru/eng/im1357https://doi.org/10.1070/IM1986v026n02ABEH001149 https://www.mathnet.ru/eng/im/v49/i2/p326
|
|