|
This article is cited in 6 scientific papers (total in 6 papers)
On a class of extremal problems
A. L. Sakhnovich
Abstract:
The matrix-valued function $\rho(\lambda,\mu)=\Phi_2(E-\lambda A^*)^{-1}S^{-1}(E-\mu A)^{-1}\Phi_2$ is investigated for operators $S>0$ satisfying the operator identity $AS-SA^*=i\Pi_1/\Pi_1^*$, $\Pi_1=[\Phi_1,\Phi_2]$. Connected with the operator $S$ is the problem of describing the taxation functions (nondecreasing operator-valued functions) $\sigma$ giving the representations
$S=\int_{-\infty}^\infty(E-At)^{-1}\Phi_2\,d\sigma(t)\Phi_2^*(E-A^*t)^{-1}$.
It is proved that the maximal jump in taxation functions at a point $\lambda_0$ ($\operatorname{Im}{\lambda_0}=0$) is equal to $\rho^{-1}(\lambda_0,\lambda_0)$. The asymptotic behavior of $\rho_k(\lambda_0,\overline\lambda_0)$ for $\operatorname{Im}{\lambda_0}\geqslant0$ as $k\to\infty$ is studied in the case when a sequence of operators $S_k$ acting in spaces $H_k$ ($H_1\subset H_2\subset\cdots$) is given. In the case of Toeplitz matrices $S$ the asymptotic behavior of $\rho_k(\lambda_0, \overline\lambda_0)$ yields the first limit theorem of Szegë.
Bibliography: 19 titles.
Received: 10.12.1984
Citation:
A. L. Sakhnovich, “On a class of extremal problems”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 436–443; Math. USSR-Izv., 30:2 (1988), 411–418
Linking options:
https://www.mathnet.ru/eng/im1304https://doi.org/10.1070/IM1988v030n02ABEH001022 https://www.mathnet.ru/eng/im/v51/i2/p436
|
Statistics & downloads: |
Abstract page: | 310 | Russian version PDF: | 85 | English version PDF: | 8 | References: | 50 | First page: | 1 |
|