Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1988, Volume 30, Issue 2, Pages 411–418
DOI: https://doi.org/10.1070/IM1988v030n02ABEH001022
(Mi im1304)
 

This article is cited in 6 scientific papers (total in 6 papers)

On a class of extremal problems

A. L. Sakhnovich
References:
Abstract: The matrix-valued function $\rho(\lambda,\mu)=\Phi_2(E-\lambda A^*)^{-1}S^{-1}(E-\mu A)^{-1}\Phi_2$ is investigated for operators $S>0$ satisfying the operator identity $AS-SA^*=i\Pi_1/\Pi_1^*$, $\Pi_1=[\Phi_1,\Phi_2]$. Connected with the operator $S$ is the problem of describing the taxation functions (nondecreasing operator-valued functions) $\sigma$ giving the representations $S=\int_{-\infty}^\infty(E-At)^{-1}\Phi_2\,d\sigma(t)\Phi_2^*(E-A^*t)^{-1}$. It is proved that the maximal jump in taxation functions at a point $\lambda_0$ ($\operatorname{Im}{\lambda_0}=0$) is equal to $\rho^{-1}(\lambda_0,\lambda_0)$. The asymptotic behavior of $\rho_k(\lambda_0,\overline\lambda_0)$ for $\operatorname{Im}{\lambda_0}\geqslant0$ as $k\to\infty$ is studied in the case when a sequence of operators $S_k$ acting in spaces $H_k$ ($H_1\subset H_2\subset\cdots$) is given. In the case of Toeplitz matrices $S$ the asymptotic behavior of $\rho_k(\lambda_0, \overline\lambda_0)$ yields the first limit theorem of Szegë.
Bibliography: 19 titles.
Received: 10.12.1984
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1987, Volume 51, Issue 2, Pages 436–443
Bibliographic databases:
UDC: 517.5
MSC: 47B35
Language: English
Original paper language: Russian
Citation: A. L. Sakhnovich, “On a class of extremal problems”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 436–443; Math. USSR-Izv., 30:2 (1988), 411–418
Citation in format AMSBIB
\Bibitem{Sak87}
\by A.~L.~Sakhnovich
\paper On~a~class of extremal problems
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1987
\vol 51
\issue 2
\pages 436--443
\mathnet{http://mi.mathnet.ru/im1304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=897008}
\zmath{https://zbmath.org/?q=an:0638.47014|0626.47020}
\transl
\jour Math. USSR-Izv.
\yr 1988
\vol 30
\issue 2
\pages 411--418
\crossref{https://doi.org/10.1070/IM1988v030n02ABEH001022}
Linking options:
  • https://www.mathnet.ru/eng/im1304
  • https://doi.org/10.1070/IM1988v030n02ABEH001022
  • https://www.mathnet.ru/eng/im/v51/i2/p436
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:310
    Russian version PDF:85
    English version PDF:8
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024