|
This article is cited in 6 scientific papers (total in 6 papers)
Distribution in the mean of arithmetic functions in short intervals in progressions
N. M. Timofeev
Abstract:
It is shown that arithmetic functions of a certain class including, in particular, the functions $\Lambda(n)$, $\mu(n)$, and $\tau_r(n)$, on the intervals $x<n\leqslant x+y$, $y>x^{7/12}$, are uniformly distributed in progressions. The result for $\Lambda(n)$ is as follows. Let
$$
\delta(Q,x,y)=\sum_{k\leqslant Q}\max_{(a,k)=1}\max_{\frac x2\leqslant N\leqslant x}\max_{h\leqslant y}\Bigg|\sum_{\substack{N<n\leqslant N+h\\n\equiv a (\operatorname{mod}k)}}\Lambda(n)-\frac h{\varphi(k)}\Bigg|.
$$
Then for $x^{3/5}(\log x)^{2(A+64)+1}\leqslant y\leqslant x$ and $Q=yx^{-1/2}(\log x)^{-(A+64)}$ we have $\delta(Q,x,y)\ll y\log^{-A}x$. If $x^{7/12}<y\leqslant x$ then this estimate holds, but with $Q=yx^{-11/20-\delta}$, $\delta>0$.
Bibliography: 16 titles.
Received: 04.02.1985
Citation:
N. M. Timofeev, “Distribution in the mean of arithmetic functions in short intervals in progressions”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 341–362; Math. USSR-Izv., 30:2 (1988), 315–335
Linking options:
https://www.mathnet.ru/eng/im1297https://doi.org/10.1070/IM1988v030n02ABEH001013 https://www.mathnet.ru/eng/im/v51/i2/p341
|
Statistics & downloads: |
Abstract page: | 266 | Russian version PDF: | 104 | English version PDF: | 13 | References: | 56 | First page: | 1 |
|