Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1988, Volume 30, Issue 2, Pages 315–335
DOI: https://doi.org/10.1070/IM1988v030n02ABEH001013
(Mi im1297)
 

This article is cited in 6 scientific papers (total in 6 papers)

Distribution in the mean of arithmetic functions in short intervals in progressions

N. M. Timofeev
References:
Abstract: It is shown that arithmetic functions of a certain class including, in particular, the functions $\Lambda(n)$, $\mu(n)$, and $\tau_r(n)$, on the intervals $x<n\leqslant x+y$, $y>x^{7/12}$, are uniformly distributed in progressions. The result for $\Lambda(n)$ is as follows. Let
$$ \delta(Q,x,y)=\sum_{k\leqslant Q}\max_{(a,k)=1}\max_{\frac x2\leqslant N\leqslant x}\max_{h\leqslant y}\Bigg|\sum_{\substack{N<n\leqslant N+h\\n\equiv a (\operatorname{mod}k)}}\Lambda(n)-\frac h{\varphi(k)}\Bigg|. $$
Then for $x^{3/5}(\log x)^{2(A+64)+1}\leqslant y\leqslant x$ and $Q=yx^{-1/2}(\log x)^{-(A+64)}$ we have $\delta(Q,x,y)\ll y\log^{-A}x$. If $x^{7/12}<y\leqslant x$ then this estimate holds, but with $Q=yx^{-11/20-\delta}$, $\delta>0$.
Bibliography: 16 titles.
Received: 04.02.1985
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1987, Volume 51, Issue 2, Pages 341–362
Bibliographic databases:
UDC: 511
MSC: 11N37
Language: English
Original paper language: Russian
Citation: N. M. Timofeev, “Distribution in the mean of arithmetic functions in short intervals in progressions”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 341–362; Math. USSR-Izv., 30:2 (1988), 315–335
Citation in format AMSBIB
\Bibitem{Tim87}
\by N.~M.~Timofeev
\paper Distribution in the mean of arithmetic functions in short intervals in progressions
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1987
\vol 51
\issue 2
\pages 341--362
\mathnet{http://mi.mathnet.ru/im1297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=897001}
\zmath{https://zbmath.org/?q=an:0621.10030}
\transl
\jour Math. USSR-Izv.
\yr 1988
\vol 30
\issue 2
\pages 315--335
\crossref{https://doi.org/10.1070/IM1988v030n02ABEH001013}
Linking options:
  • https://www.mathnet.ru/eng/im1297
  • https://doi.org/10.1070/IM1988v030n02ABEH001013
  • https://www.mathnet.ru/eng/im/v51/i2/p341
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:266
    Russian version PDF:104
    English version PDF:13
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024