Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1990, Volume 35, Issue 1, Pages 1–35
DOI: https://doi.org/10.1070/IM1990v035n01ABEH000684
(Mi im1269)
 

This article is cited in 8 scientific papers (total in 8 papers)

The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in $L_1$ equal to zero on a given set

I. L. Bloshanskii
References:
Abstract: The precise structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere (a.e.) of Fourier series of functions in the class $L_1(T^N)$, $N\geqslant1$, $T^N[0,2\pi]^N$, and vanishing on a given measurable set $E$ is found (in the case $N\geqslant2$ this is done for both rectangular and square summation).
Bibliography: 21 titles.
Received: 13.07.1987
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1989, Volume 53, Issue 4, Pages 675–707
Bibliographic databases:
UDC: 517.5
MSC: Primary 42B05; Secondary 42A63
Language: English
Original paper language: Russian
Citation: I. L. Bloshanskii, “The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in $L_1$ equal to zero on a given set”, Izv. Akad. Nauk SSSR Ser. Mat., 53:4 (1989), 675–707; Math. USSR-Izv., 35:1 (1990), 1–35
Citation in format AMSBIB
\Bibitem{Blo89}
\by I.~L.~Bloshanskii
\paper The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in~$L_1$ equal to zero on a~given set
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1989
\vol 53
\issue 4
\pages 675--707
\mathnet{http://mi.mathnet.ru/im1269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1018743}
\zmath{https://zbmath.org/?q=an:0701.42008}
\transl
\jour Math. USSR-Izv.
\yr 1990
\vol 35
\issue 1
\pages 1--35
\crossref{https://doi.org/10.1070/IM1990v035n01ABEH000684}
Linking options:
  • https://www.mathnet.ru/eng/im1269
  • https://doi.org/10.1070/IM1990v035n01ABEH000684
  • https://www.mathnet.ru/eng/im/v53/i4/p675
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:413
    Russian version PDF:116
    English version PDF:28
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024