|
This article is cited in 7 scientific papers (total in 7 papers)
An existence theorem for exceptional bundles on $\mathrm K3$ surfaces
S. A. Kuleshov
Abstract:
Discrete invariants of exceptional bundles on a $\mathrm K3$ surface $S$ obey the equation $c_1^2-2r(r-c_2+c_1^2/2)=-2$. In this paper it is proved that if the triple $(r,c_1,c_2)\in\mathbf Z\times\operatorname{Pic}(S)\times\mathbf Z$ satisfies this equation, then there exists an exceptional bundle $E$ on $S$ for which $r(E)=r$, $c_1(E)=c_1$ and $c_2(E)=c_2$ (modulo numerical equivalence). In addition, methods of constructing exceptional bundles on a $\mathrm K3$ surface are indicated.
Bibliography: 10 titles.
Received: 26.04.1988
Citation:
S. A. Kuleshov, “An existence theorem for exceptional bundles on $\mathrm K3$ surfaces”, Math. USSR-Izv., 34:2 (1990), 373–388
Linking options:
https://www.mathnet.ru/eng/im1245https://doi.org/10.1070/IM1990v034n02ABEH001316 https://www.mathnet.ru/eng/im/v53/i2/p363
|
Statistics & downloads: |
Abstract page: | 329 | Russian version PDF: | 152 | English version PDF: | 31 | References: | 54 | First page: | 1 |
|