|
This article is cited in 6 scientific papers (total in 6 papers)
The distribution of Hardy–Littlewood numbers in arithmetic progressions
Z. Kh. Rakhmonov
Abstract:
An asymptotic formula is obtained for the number of solutions of the congruence
$$
p+n^2\equiv l\ (\operatorname{mod}D),\qquad p\leqslant x,\quad n\leqslant\sqrt x,\quad(l,D)=1,
$$
where $D$ is a sufficiently large prime.
Bibliography: 7 titles.
Received: 15.06.1987
Citation:
Z. Kh. Rakhmonov, “The distribution of Hardy–Littlewood numbers in arithmetic progressions”, Math. USSR-Izv., 34:1 (1990), 213–228
Linking options:
https://www.mathnet.ru/eng/im1237https://doi.org/10.1070/IM1990v034n01ABEH000621 https://www.mathnet.ru/eng/im/v53/i1/p211
|
|