Abstract:
The fractional index of a (possibly singular) QQ-Gorenstein del Pezzo surface X is the greatest rational number r such that −KX≡rH, where H is a primitive Cartier divisor. This paper describes the set of values taken by fractional indices of del Pezzo surfaces with log terminal singularities.
Bibliography: 7 titles.
This publication is cited in the following 13 articles:
Christopher Hacon, James McKernan, Chenyang Xu, “ACC for log canonical thresholds”, Ann. Math, 180:2 (2014), 523
Yu. G. Prokhorov, “ON LOG CANONICAL THRESHOLDS. II”, Communications in Algebra, 30:12 (2002), 5809
Frieda M. Ganter, “Properties of —P · P for Gorenstein surface singularities”, Math Z, 223:1 (1996), 411
M. V. Degtyarev, “A bound on the Picard number of a resolution of singularities of the Fano $\operatorname{SL}(2)$-variety”, Russian Math. Surveys, 51:2 (1996), 324–325
Frieda M. Ganter, “Properties of $-P\cdot P$ for Gorenstein surface singularities”, Math Z, 223:3 (1996), 411
Frieda Marshall Ganter, “-P.P For surfaces zn= f(x, y)”, Communications in Algebra, 23:3 (1995), 1171
R. Blache, “Two aspects of log terminal surface singularities”, Abh Math Semin Univ Hambg, 64:1 (1994), 59
Valery Alexeev, “Two two-dimensional terminations”, Duke Math. J., 69:3 (1993)
A. A. Borisov, L. A. Borisov, “Singular toric Fano varieties”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 277–283
Kollar J., “Flips and Abundance for Algebraic Threefolds - a Summer Seminar at the University-of-Utah (Salt-Lake-City, 1991) - Preface”, Asterisque, 1992, no. 211, 1+
V. V. Nikulin, “Algebraic three-folds and the diagram method”, Math. USSR-Izv., 37:1 (1991), 157–189
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities. III”, Math. USSR-Izv., 35:3 (1990), 657–675
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities”, Math. USSR-Sb., 66:1 (1990), 231–248